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Abstract
Efficient skill acquisition is crucial for creating versatile robots. One intuitive way to teach a robot new tricks is to
demonstrate a task and enable the robot to imitate the demonstrated behavior. This approach is known as imitation
learning. Classical methods of imitation learning, such as inverse reinforcement learning or behavioral cloning, suffer sub-
stantially from the correspondence problem when the actions (i.e. motor commands, torques or forces) of the teacher
are not observed or the body of the teacher differs substantially, e.g., in the actuation. To address these drawbacks we
propose to learn a robot-specific controller that directly matches robot trajectories with observed ones. We present a
novel and robust probabilistic model-based approach for solving a probabilistic trajectory matching problem via policy
search. For this purpose, we propose to learn a probabilistic model of the system, which we exploit for mental rehearsal
of the current controller by making predictions about future trajectories. These internal simulations allow for learning a
controller without permanently interacting with the real system, which results in a reduced overall interaction time.
Using long-term predictions from this learned model, we train robot-specific controllers that reproduce the expert’s dis-
tribution of demonstrations without the need to observe motor commands during the demonstration. The strength of
our approach is that it addresses the correspondence problem in a principled way. Our method achieves a higher learn-
ing speed than both model-based imitation learning based on dynamics motor primitives and trial-and-error-based learn-
ing systems with hand-crafted cost functions. We successfully applied our approach to imitating human behavior using a
tendon-driven compliant robotic arm. Moreover, we demonstrate the generalization ability of our approach in a multi-
task learning setup.

1 Introduction

Programming robots to perform complex tasks is diffi-
cult with classical methods for instructing robots, such
as textual or graphical user interface (GUI)-driven pro-
gramming techniques (Biggs & Macdonald, 2003).
These methods require a large amount of work for pro-
gramming a single task, and transfer to new environ-
ments is often not straightforward. In particular, for
programming versatile robots, where fast learning of
new tasks in changing environments is necessary, these
programming methods are often impractical.

Imitation learning (IL) is an approach to address
such skill acquisition problems in an elegant way: A
teacher’s demonstration of a task is recorded, and, sub-
sequently, learning algorithms transfer the task to a
robot (Atkeson & Schaal, 1997; Argall, Chernova,
Veloso, & Browning, 2009). In particular, for tasks that
humans can perform well, this approach is often more
straightforward for transferring skills than program-
ming methods. Another advantage is that if robot
movements resemble human movements, it is more

likely that they will be accepted by humans, which,
from a psychological point of view, is desirable when
integrating robots into domestic environments.

Common IL methods include behavioral cloning
(BC) (Bain & Sammut, 1999) and inverse reinforcement
learning (IRL) (Ng & Russell, 2000). In BC, demon-
strated trajectories are used to learn a policy mapping
from observed states to controls. Subsequently, the
robot applies the policy. In IRL, the demonstrations
are used to learn the teacher’s cost function.
Subsequently, a policy is learned that minimizes the
learned cost function.
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One key challenge in IL is the correspondence prob-
lem (Nehaniv & Dautenhahn, 2002): if the body of the
teacher and the robot differ, finding an adequate map-
ping from the teacher’s demonstrations to the robot is
non-trivial. The correspondence problem can occur in
many different forms: One form is due to different ana-
tomies between the teacher and the robot. As a conse-
quence, some demonstrated behaviors of the teacher
may not be executable by the robot. Another form of
the correspondence problem are different dynamics
properties between teacher and robot. For example,
robots often have torque limits, such that the robot’s
joints cannot achieve the same velocities as those of the
teacher.

In this paper, we propose a novel model-based IL
approach that addresses the correspondence problem
and allows robots to efficiently acquire new behaviors
from multiple expert demonstrations. The key idea is to
directly match the predicted state trajectory of the robot
with the teacher’s demonstrations by learning a robot-
specific controller. This gives us the advantage that it is
not necessary to record the actions of the expert demon-
strations, which allows us to choose from a wider range
of demonstration methods (e.g. visual motion record-
ings, recordings with other robots) and to use the same
demonstrations for teaching multiple different robots.

Our approach exploits a forward model of the
robot’s dynamics to generate trajectory predictions for
a given controller. Using these simulations instead of
sampling real robot trajectories reduces the interaction
time with the robot. Such data-efficient learning saves
experimental time and reduces the number of repairs.
In the absence of a good parametric robot model, we
propose to learn a data-driven forward model using a
probabilistic non-parametric Gaussian process (GP)
(Rasmussen & Williams, 2006). Learning a non-
parametric forward model is especially suited for
robots, where it is difficult to model the robot’s
dynamics with classical approaches such as rigid-body
dynamics (e.g. the BioRob", see Figure 1). A probabil-
istic model allows us to take uncertainty about the
robot’s dynamics into account, which reduces learning
bias due to model errors (Atkeson & Santamarı́a, 1997;
Schneider, 1997; Deisenroth & Rasmussen, 2011), a
problem that is particularly pronounced when only a
few samples and no informative prior knowledge is
available. Furthermore, we do not need to make poten-
tially unrealistic assumptions (e.g. about rigid-body
dynamics or linear friction), which are typically made
when learning parametric forward models in robotics
(Spong, Hutchinson, & Vidyasagar, 2006).

The contribution of this paper is a model-based IL
framework based on probabilistic trajectory matching
that addresses the correspondence problem in a prin-
cipled way. We show that our IL approach learns faster
and more robust than related approaches and

demonstrate its generalization properties on an elastic
compliant robot manipulator, see Figure 1.

The rest of the paper is structured as follows. In
Section 2, we present related work on skill learning in
robotics. In Section 3, we formulate the problem setup
and provide some background on GPs. In Section 4,
we describe our model-based IL approach, where we
use reinforcement learning methods to find optimal
policies. In Section 5, we demonstrate the viability of
our approach on both simulated and real robots, such
as the biomechanically inspired manipulator shown in
Figure 1.

2 Related work

Research in the field of IL devised techniques that dif-
fer in the way the demonstrations are provided
(e.g. motion capture (Ude, Atkeson, & Riley, 2004),
physical interaction (Ben Amor, Berger, Vogt, & Jung,
2009)), the level at which the imitation happens (e.g. at
the symbolic (Zöllner, Asfour, & Dillmann, 2004) or
trajectory level (Calinon, Guenter, & Billard, 2007)),
whether they use a system model, and whether/how
they employ cost functions for the task. A detailed sur-
vey about learning skills from demonstration can be
found in Argall et al. (2009).

A classic form of IL is BC. In BC, the behavior of a
skilled human is recorded and, subsequently, an induc-
tion algorithm is executed over the traces of the beha-
vior (Bain & Sammut, 1999). In classical BC, the
objective of cloning observed expert demonstrations is
phrased as a supervised learning problem. This prob-
lem is solved by learning a function from demonstra-
tion data that maps states to actions, i.e. a policy. An
impressive early application of BC was the autonomous
vehicle ALVINN (Pomerleau, 1989), which learned a
neural-network policy for driving a car using recorded
state–action training pairs of a human driver.
Advantages of BC are the straightforward application
and the clean-up effect, i.e. the smoothing of noisy

Figure 1. The BioRob" is a compliant, biomechanically
inspired robot manipulator with drive cables and springs, which
represent tendons and their elasticity. Classical control
approaches based on rigid-body dynamics are unrealistic for this
robot because they ignore the cable-driven properties and the
elasticity of the tendons.

Englert et al. 389

 at Universitaet Stuttgart on September 16, 2013adb.sagepub.comDownloaded from 

http://adb.sagepub.com/


imperfect demonstrations. However, BC restricts the
ways how the demonstrations can be recorded because
it also needs to observe the action signals during the
demonstration. In addition, it suffers severely from the
correspondence problem because it directly maps
recorded states to recorded actions without taking the
anatomy and physics of the robot into account.
Therefore, BC is not robust to changes in either the
control task or the environment and cannot provide
strong performance guarantees.

One more recent approach of IL is the use of dynamic
movement primitives (DMPs) (Schaal, Ijspeert, &
Billard, 2003; Schaal, Peters, Nakanishi, & Ijspeert,
2005). DMPs are a representation of movements as non-
linear differential equations that provide the option to
modify the movement in different ways, e.g. goal posi-
tion or duration. The shape of DMPs is learned from
demonstrated trajectories. Since DMPs are typically
used in the robot’s joint space, demonstrations in task
space require an additional mapping. Multiple exten-
sions and modification for DMPs exist, e.g. real-time
goal adaption (Hoffmann, Pastor, Park, & Schaal, 2009)
or generalizing movements with a mixture of DMPs
(Mülling, Kober, Kroemer, & Peters, 2013).

IRL is a form of IL that automatically extracts a cost
function from demonstrations of a task (Ng & Russell,
2000; Boularias, Kober, & Peters, 2011). Subsequently,
a policy is found that minimizes this cost function. By
minimizing the teacher’s cost function, the learned pol-
icy is supposed to produce a behavior similar to the
demonstration. Hence, IRL is suited for tasks where
the hand-crafted definition of a suitable cost function is
difficult (e.g. parking lot navigation (Abbeel, Dolgov,
Ng, & Thrun, 2008) or quadruped locomotion (Kolter,
Abbeel, & Ng, 2008)). Drawbacks of IRL are that the
performance of most methods rely on feature selection,
which can strongly bias the performance.

Transferring a skill through IL limits the perfor-
mance of the robot to the skill of the teacher that pro-
vided the demonstration. Reinforcement Learning (RL)
is a common technique to improve skills after applying
IL. RL (Sutton & Barto, 1998) is an approach, where a
task-specific cost function is minimized. RL has been
successfully used in robotics applications for learning
the ball-in-a-cup game (Kober & Peters, 2010) and heli-
copter hovering (Ng, Kim, Jordan, & Sastry, 2003).
However, a major difficulty in RL is engineering a suit-
able cost function for more complex tasks.

In this paper, we phrase IL directly as a probabilistic
trajectory-matching problem. We learn policies that
maximize the similarity between distributions over
demonstrated expert trajectories and predicted robot
trajectories. As a difference measure between trajectory
distributions we use the Kullback–Leibler (KL) diver-
gence. We show that our IL problem is equivalent to a
reinforcement learning problem with an induced cost
function. Compared with other IL algorithms our

approach addresses the correspondence problem in two
ways: first, robot-specific controllers are learned that
explicitly take the robot’s torque limits and anatomic
differences between the robot and the teacher into
account; second, it is not necessary to record actions of
the teacher’s demonstrations.

3 Problem statement and background

Throughout this paper, we use the following notation:
we denote states by x 2 RD and actions by u 2 RE,
respectively. Furthermore, we define a trajectory t as a
sequence of states x0, x1, . . . , xT for a fixed finite time
horizon T . Our goal is to learn a policy p such that the
robot’s trajectory match demonstrated trajectories. We
assume a parametrized state-feedback policy p such that
u=p(x, u) with policy parameters u.

3.1. Problem statement

We assume that the teacher provides n trajectories ti

from which the robot should learn to imitate the demon-
strated behavior. We assume that the demonstrated tra-
jectories start from an initial state distribution p(x0) to
account for variability in the demonstrations. Since we
have n different trajectories, we use the probability distri-
bution p(texp) to represent the variability of the demon-
strated trajectories. For example, a transporting task
requires at the pick-up position of the object a higher
accuracy, and, hence, the variance of the demonstrations
is smaller there than during the transport itself. We also
use a probability distribution for representing the robot
trajectory predictions p(tp), which allows us to represent
uncertainty of the robot’s dynamics in a principled way.

Our goal is to find a policy p, such that the robot’s
behavior matches the demonstrations. For this pur-
pose, our objective is to match the distribution over
predicted trajectories p(tp) with the distribution over
demonstrated trajectories p(texp). As a similarity mea-
sure between these distributions, we use the KL diver-
gence (Solomon, 1959). Hence, our IL objective is to
find a policy such that

p! 2 argmin
p

KL(p(texp)jjp(tp)): ð1Þ

For predicting p(tp), we exploit a learned model of the
robot’s forward dynamics, which we describe in the
following.

3.2. Learning probabilistic forward models

We learn a forward model of the robot’s dynamics for
performing internal simulations, which is related to the
concept that humans rely on internal models for plan-
ning, control, and learning of their dynamics behavior
(Wolpert, Ghahramani, & Jordan, 1995). A forward
model f maps a state xt and action ut of the system to
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the next state xt + 1. In our case, we assume that
xt+ 1 = f (xt, ut)+ E where E;N (0,SE) is independent
and identically distributed (i.i.d.) Gaussian noise with
SE =diag(½s2

1 . . . s2
D%). Such a model represents the

transition dynamics of a robot. We represent the model
by a GP, i.e. a probability distribution over models
(Rasmussen & Williams, 2006). A GP is defined as a
collection of random variables, any finite number of
which is Gaussian distributed.

Since a GP is a consistent, non-parametric method,
we do not have to specify a restrictive parametric
model. The GP infers a posterior distribution over the
underlying function f directly from the data, while the
uncertainty about this estimate is represented as well.
As training inputs to the GP, we use state–action pairs
(x(i)t , u(i)t ) and as targets the corresponding successors
x(i)t+ 1 for i= 1, . . . , n. Such a GP represents one-step
transitions in the form

p(xt + 1jxt, ut)=N (xt+ 1jmt+ 1,St+ 1) ð2Þ

withmt + 1 = Ef ½f (xt, ut)%=mf (xt, ut), ð3Þ

St+ 1 =varf ½f (xt, ut)%=s2
f (xt, ut), ð4Þ

where mf is the mean and s2
f the variance of f . An

example of such a model is visualized in Figure 2, where
the horizontal axis represents state–action input pairs
(xt, ut) and the vertical axis represents the predicted next
state xt+ 1.

A GP is completely specified by a mean function m
and a covariance function k. The mean function allows
to integrate prior knowledge about the underlying
dynamics f (e.g. rigid-body dynamics) and the covar-
iance function incorporates some high-level structured

assumptions about the true underlying function (e.g.
smoothness). We use an uninformative prior mean
function m[0 for symmetry reasons and a squared
exponential covariance function plus noise covariance

k(~xp, ~xq)=a2 exp &1
2(~xp & ~xq)

>L&1(~xp & ~xq)
! "

+ dpqs2
E ð5Þ

with inputs of the form ~x= ½x>, u>%>, so that we obtain
a smooth function. The parameter a2 is the signal var-
iance, L=diag(½l2

1, . . . , l2
D%) is a matrix with the squared

length scales, and dpq is the Kronecker symbol, which is
1 when p= q, and 0 otherwise. The posterior predictive
distribution at a test input ~xØ is given by the mean and
variance

mf (~xØ)= k>ØK
&1y, ð6Þ

s2
f (~xØ)= kØØ & k>ØK

&1kØ ð7Þ

with kØ :¼ k( ~X, ~xØ), kØØ :¼ k(~xØ, ~xØ), Gram matrix
K with Kij = k(~xi, ~xj), and training inputs
~X= ½~x1, . . . , ~xn% with corresponding targets
y= ½y1, . . . , yn%T. Equations (2)–(7) are used to simulate
the system for a single time step and map the current
state–action pair (xt, ut) onto a probability distribution
over the next state xt + 1 (see Figure 2). The GP model
can be reused for different tasks as long the dynamics
of the system do not change.

4. Probabilistic imitation learning via
trajectory matching

Our goal is to imitate the expert’s behavior by finding a
policy p! that minimizes the KL divergence between
the distribution p(texp) over demonstrated trajectories
and the distribution p(tp) over predicted trajectories
when executing a policy p, see Equation (1).

The KL divergence is a difference measure between
two probability distributions and is defined for contin-
uous distributions p(x) and q(x) as

KL(p(x)jjq(x))=
Z

p(x) log
p(x)

q(x)
dx: ð8Þ

The KL divergence has been widely used in the develop-
ment of machine learning algorithms. In robotics
research, it has been previously used to measure the dis-
tance between hidden Markov models (Inamura, Tanie,
& Nakamura, 2003; Nakamura, Takano, & Yamane,
2007) and for mapping and localization algorithms
(Carlone, Du, Ng, Bona, & Indri, 2010).

4.1. Trajectory representation

We approximate a distribution over trajectories
p(t)= p(x0, . . . , xT ) by a Gaussian N (tjmt,St) that
factorizes according to

Figure 2. Learning a probabilistic forward model with GPs.
The horizontal axis represents state–action input pairs (xt,ut) of
the model and the vertical axis represents the predicted next
state xt+ 1. The black crosses denote the training data and the
gray shaded area represents two times the standard deviation of
the predictive uncertainty. It can be seen, that in the region
around the training points, the predictions are more certain
than at inputs further away. The red line denotes a test input in
a region where we have not observed any data. Here, the model
would return the prior with our initial uncertainty.
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p(t)’
YT

t= 1

p(xt)=
YT

t= 1

N (xtjmt,St): ð9Þ

This simplifying assumption implies that St 2 RTD3TD is
block-diagonal without cross-correlations among states at
different time steps. In the following, we describe how we
compute the probability distributions over trajectories
p(texp) from demonstrations and p(tp) with model pre-
dictions for our objective in Equation (1).

4.1.1. Estimation of a distribution over expert trajectories. The
demonstrations of the teacher are converted such that
they are time-aligned, i.e. each trajectory ti consists of a
sequence of T states. This can be achieved for example
through dynamic time warping (Sakoe & Chiba, 1978).
The mean and covariance matrix of the marginals p(xt)

are computed as unbiased estimates p(xt)’N (m̂exp
t , bSexp

t ),
where

m̂exp
t =

1

n

Xn

i= 1

xi
t ð10Þ

Ŝexp
t =

1

n& 1

Xn

i= 1

(xi
t & m̂exp

t )(xi
t & m̂exp

t )>: ð11Þ

In Equations (10)–(11), xi
t is the state after t time steps

of the ith demonstrated expert trajectory. This estima-
tion yields an approximate Gaussian distribution over
the expert trajectories

p(texp)=N (m̂exp, bSexp)

=N

m̂exp
1

m̂exp
2

..

.

m̂exp
T

2

66664

3

77775
,

bSexp
1 0 . . . 0

0 bSexp
2

..

.

..

. . .
.

0

0 . . . 0 bSexp
T

2

6666664

3

7777775

0

BBBBBB@

1

CCCCCCA

ð12Þ

with a block-diagonal covariance matrix bSexp. An illus-
tration of such a trajectory representation is shown in
Figure 3, where multiple teacher demonstrations (blue
dashed lines) are estimated by a Gaussian (red shaded
graph).

4.1.2. Predicting a distribution over robot trajectories. We
use the learned GP forward model described in Section
3.2 for iteratively predicting the state distributions
p(x1), . . . , p(xT ) for a given policy p and an initial state
distribution p(x0). These long-term predictions are the
marginal distributions of p(tp). Note that even for a
given input pair ~xt =(xt, ut), the GP’s prediction is a
probability distribution, given by Equations (6)–(7).
Iteratively computing the predictions p(x1), . . . , p(xT ),
therefore, requires to predict with GPs at uncertain

inputs (Quiñonero-Candela, Girard, Larsen, &
Rasmussen, 2003; Deisenroth & Rasmussen, 2011).
Computing p(xt + 1) at an uncertain input p(xt, ut)=
N (~xtj~mt,

eSt) requires integrating out both the uncer-
tainty about the state–action pair ~xt and the posterior
uncertainty about the function f ;GP according to

p(xt+ 1)=

ZZ
p(xt + 1j~xt)p(~xt)df d~xt, ð13Þ

where xt + 1 = f (~xt)= f (xt, ut). The transition probabil-
ity p(xt + 1j~xt) is the posterior GP predictive distribution
given in Equations (6)–(7), and p(~xt)=N (~xtj~mt,

~St) is
assumed Gaussian. This mapping of an uncertain input
p(xt, ut) through a GP is visualized in Figure 4. The
input distribution is shown in the bottom panel, and
the GP is shown in the top left panel. The exact predic-
tive distribution p(xt + 1) from Equation (13) is visua-
lized in the top right panel of Figure (13) as the red
shaded area. However, computing the exact distribu-
tion p(xt + 1) given in Equation (13) is analytically
intractable. Therefore, we approximate it by a Gaussian
p(xt+ 1)’N (xt + 1jmt + 1,St + 1), which is shown as the
blue graph in the top right panel of Figure 4.

For the Gaussian approximation of p(xt + 1) we use
exact moment matching. Following Deisenroth and
Rasmussen (2011) the mean is computed (using the law
of total expectation and Equation (6)) by

mt + 1 =E ½f (~xt)%=E~x½Ef ½f (~xt)j~xt%% ¼
(3) E~x½mf (~xt)%

=

Z
mf (~xt)N (~xtj~mt,

~St)d~xt¼
(6)

Z
k(~xt, ~X)N (~xtj~mt,

~St)d~xtK
&1y=b>q ð14Þ

with b=K&1y and q= ½q1, ( ( ( , qn%>. Using Equation
(5), the entries of q are given by

1 5 10 15 20 25

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time step t

S
ta

te
 x

 

Teacher demonstrations
Estimated distribution

Figure 3. Estimation of a Gaussian distribution p(texp) over
trajectories.
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qi =

Z
k(~xt, ~xi)N (~xtj~mt,

~St)d~xt

=a2j~StL
&1 + Ij&

1
2 exp (& 1

2v
>
i (

~St +L)&1vi),

ð15Þ

where we used vi :¼ ~xi & ~mt with the training input ~xi.
The predictive covariance matrix St + 1 can be derived
similarly. The entries of the covariance matrix
St+1 2RD3D for the target dimension a,b=1, . . . ,D are

s2
ab =b>a (Q& qaq

>
b )bb + dab a2

a & tr(K&1Q)
! "

: ð16Þ

In Equation (16), the entries Qij of Q 2 Rn3n are given
by

Qij =a2
aa2

bj(L
&1
a +L&1

b )~St + Ij&
1
2 exp

3 &1
2(~xi & ~xj)

>(La +Lb)
&1(~xi & ~xj)

! "

3 exp &1
2(ẑij & ~mt)

>((L&1
a +L&1

b )&1 + ~St)
&1
(ẑij & ~mt)

# $

ð17Þ

with

ẑij =Lb(La +Lb)
&1~xi +La(La +Lb)

&1~xj, ð18Þ

where i, j= 1, . . . , n. For a detailed derivation of these
results, see Deisenroth and Rasmussen (2011).

The GP predictions at uncertain inputs from
Equations (14)–(18) allow the system to iteratively pre-
dict the long-term outcome for a policy p and a given
distribution of the start state x0, which results in a
probability distribution over trajectories p(tp).

4.2. Natural cost function

In the previous sections, we detailed how to approxi-
mate p(texp) and p(tp) by Gaussian distributions. For

such a special case of two Gaussian distributions
p(x);N (xjm0,S0) and q(x);N (xjm1,S1), the KL diver-
gence in Equation (8) has the closed-form expression

KL pjjqð Þ= 1
2 log S&1

1 S0

%%%
%%%

+ 1
2tr m&1

1 ((m0 & m1)(m0 & m1)
T +S0 & S1)

! "
:

ð19Þ

We use Equation (19) for our IL approach as a cost
function between probability distributions over trajec-
tories p(texp) and p(tp). The trajectory factorization in
Equation (9) simplifies the KL divergence as it is suf-
fices to sum up the individual KL divergences of the
marginal distributions p(xexpt ) and p(xp

t ), t = 1, . . . , T ,
and we obtain the IL objective function

Jp
IL =KL(p(texp)jjp(tp))=

XT

t = 1

KL(p(xexpt )jjp(xp
t )):

ð20Þ

Here, we used the trajectory representations from
Section 4.1 and Equation (8). Since the marginals p(xt)
are approximated by Gaussians, the KL divergence in
Equation (20) can be evaluated in closed form by apply-
ing Equation (19).

Matching the distribution of the predicted state tra-
jectory for a given policy with the distribution over
expert trajectories by means of minimizing the KL
divergence induces a natural cost function in a stan-
dard RL context (Englert, Paraschos, Peters, &
Deisenroth, 2013): Equation (20) shows that matching
two factorized distributions by means of the KL diver-
gence yields an additive objective function. Therefore,
with c(xt)=KL(p(xexpt )jjp(xp

t )), we can use RL

−1 −0.5 0 0.5 1

x t

−1 −0.5 0 0.5 1
0

1

(x
t−1

,u
t−1

)

p(
x t−

1,u
t−

1)

0 0.5 1 1.5

x t

p(x
t
)

Figure 4. Visualization of predictions with GPs at uncertain inputs. The bottom panel shows the Gaussian input distribution
p(xt,ut)=N (~xj~mt

~!t). The upper left panel shows the distribution f ∼GP. The upper right panel shows the exact prediction p(xt+ 1)
shaded in red, which cannot be computed analytically (see Equation (13)). Therefore, we use exact moment matching to
approximate this distribution with a Gaussian N (xt+ 1jmt+ 1,St+ 1), which is drawn as a blue graph in the upper right panel.
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methods to minimize Equation (20) since the IL objec-
tive Jp

IL corresponds to a RL long-term cost Jp
RL of the

form

Jp
RL =

XT

t= 1

c(xp
t )=

XT

t= 1

KL(p(xexpt )jjp(xp
t ))

=
XT

t= 1

KL(N (m̂exp
t , Ŝexp

t )jjN (mp
t ,Sp

t ))= Jp
IL:

ð21Þ

In Equation (21), we used our assumption that trajec-
tories are represented by Gaussian distributions with
block-diagonal covariance matrices.

Since KL(p(xexpt )jjp(xp
t )) corresponds to a RL long-

term cost function, we can apply RL algorithms to find
optimal policies. In principle, any algorithm that can
predict trajectories of the current policy p is suitable.
For instance, model-free methods based on sampling
trajectories directly from the robot (Sutton & Barto,
1998; Peters, Mülling, & Altun, 2010) or model-based
RL algorithms that learn forward models of the robot
and, subsequently, use them for predictions (Doya,
2000; Ng & Jordan, 2000; Bagnell & Schneider, 2001;
Deisenroth, Rasmussen, & Fox, 2011) are suitable. In
this paper, we exploit the relationship between RL and
IL via trajectory matching and use a model-based pol-
icy search method with learned probabilistic forward
models (Deisenroth & Rasmussen, 2011) to minimize
the KL divergence KL(p(texp)jjp(tp)).

4.3. Policy learning

For learning a policy that solves the IL problem in
Equation (1), we exploit the result in Equation (21) and
use the PILCO (Probabilistic Inference for Learning
COntrol) framework (Deisenroth & Rasmussen, 2011)
as RL method for matching the trajectory distributions
p(texp) and p(tp). An overview of our method is given
in Algorithm 1.

Our objective is to find parameters u of a policy p
that minimize the long-term cost in Equation (21). To
find policy parameters u, such that the distribution over
the predicted trajectory matches the distribution over
the expert trajectory, we minimize our cost function in
Equation (20) by means of gradient-based optimization.

The gradient of the IL objective J p
IL with respect to the

policy parameters u is

dJp
IL

du
=
XT

t = 1

∂KL

∂mp
t

dmp
t

du
+

∂KL

∂Sp
t

dSp
t

du

& '
, ð22Þ

where we require the partial derivatives of the KL
divergence with respect to the mean mp

t and the covar-
iance Sp

t of the predicted state distribution at time t.
The corresponding partial derivatives are given by

∂KL

∂mp
t

= & (Sp
t )
&1(m̂exp

t & mp
t ), ð23Þ

∂KL

∂Sp
t

= 1
2(S

p
t )
&1 & 1

2(S
p
t )
&1((Sp

t )
&1

+(m̂exp
t & mp

t )(m̂
exp
t & mp

t )
T)(Sp

t )
&1,

ð24Þ

respectively. The derivatives of the mean mp
t and covar-

iance Sp
t with respect to u are the same as in Deisenroth

and Rasmussen (2011). All of the derivatives in
Equation (22) can be computed analytically and allow
to use of fast gradient-based optimization methods,
such as conjugate gradient (CG) or Broyden—
Fletcher—Goldfarb—Shannon (BFGS).

With the KL divergence as the difference measure
between the estimated expert distribution p(texp) over
trajectories and the predictive distribution p(tp) over
trajectories, we have formulated model-based IL as a
reinforcement learning problem. Thereby, the KL
divergence serves as an induced natural cost function.
The analytic gradients of the loss function allow us to
use gradient-based policy search methods. Therefore,
we introduced all ingredients for performing probabilis-
tic model-based IL (see Algorithm 1) and solving the
problem defined in Equation (1).

5 Experimental results

In this section, we demonstrate the performance of our
model-based IL approach in different experiments.
First, a policy for a swing-up task of a simulated dou-
ble pendulum with two actuators was learned by means
of IL. Second, a tendon-driven real BioRob" with
complex internal dynamics learned to imitate

Algorithm 1 Probabilistic model-based imitation learning.
input: n expert trajectories ti of a task
init: Estimate expert distribution over trajectories p(texp) (see Section 4.1.1)

Record state–action pairs of the robot (e.g. through applying random control signals)
repeat

Learn/update probabilistic GP forward model (see Section 3.2)
Predict p(tp) (see Section 4.1.2)
Learn policy pØ 2 argminp KL(p(texp)jjp(tp)) (see Section 4.3)
Apply pØ to system and record data

until task learned
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demonstrations provided via kinesthetic teaching. We
demonstrate that our IL approach addresses the corre-
spondence problem.

In the following experiments, we used a nonlinear
radial basis function (RBF) network with axis-aligned
Gaussian features f as policy parametrization. This
policy can be written as

~p(x, u)=
Xm

i= 1

wifi(x) with ð25Þ

fi(x)= exp (& 1
2(x& ci)

TG&1(x& ci)), ð26Þ

weights wi, centers ci, and widths gi of each dimension
in G=diag(g2

1, g
2
2, . . . , g2

D). The parameters
u= fw, c, gg of the RBF network were learned by
minimizing JIL in Equation (20) with gradient-based
optimization methods. For taking the torque limits
umax appropriately into account during planning, we
squash the policy ~p through a sinusoidal function to
obtain the torque-restricted policy

p(x, u)= umax sin (~p(x, u)): ð27Þ

Therefore, the planning phase already takes the robot’s
torque limits into account, which restricts the policy to
the mechanically admissible range.

5.1. Double pendulum

The double pendulum consists of two links and two
actuated joints and was mounted on the ground (see
Figure 5). The system state consisted of joint positions
and velocities x= ½q1, q1, _q2, _q2%>; the motor torques
served as actions u= ½u1, u2%>. The task was to swing
up and balance the double pendulum in the inverted
position, see Figure 5. Each link had a mass m= 0:5 kg
and a length l = 0:5m. The motor torques were limited
to the range ½&3:5, 3:5% Nm. We used a sampling fre-
quency of 10Hz at which the control signals could be
changed and a total prediction horizon of T = 2:5s.
For the RBF network in Equations (25)–(26) we used
100 basis functions, which resulted in 812 policy para-
meters u.

The GP forward model was learned in joint space,
but trajectory matching via minimizing the KL

divergence was performed in task space, i.e. the
observed trajectories consisted of a sequence of link
positions ½x1, y1, x2, y2%. Therefore, solving the IL task
required addressing one form of the correspondence
problem. The distribution p(texp) over expert trajec-
tories was based on five similar successful demonstra-
tions of the task and created according to Section 4.1.
Figure 6 shows the predicted robot trajectory distribu-
tion p(tp) in the blue shaded graph and the distribution
over expert trajectories p(texp), represented by the red
graph. Both predictive distributions are shown in task
space coordinates. The figure illustrates that
the learned policy adapts to changing variability of the
demonstrations, which is especially pronounced in the
x1-coordinate, i.e. the x-coordinate of the inner link.

5.1.1. Comparison with reinforcement learning and imitation
learning. To qualitatively evaluate learning speed, we
compared our proposed model-based IL approach with
RL approaches that learn the double-pendulum swing-
up task. Unlike our IL approach, which matches trajec-
tory distributions by minimizing their KL divergence,
RL requires a hand-crafted cost function, where we
chose the common cost function

c(x)= 1& exp (& jjx& xtargetjj2=8) ð28Þ

with the target state xtarget in task space. As a RL algo-
rithm, we used the PILCO policy search framework
(Deisenroth & Rasmussen, 2011), which allows an ade-
quate comparison of the learning speed since it also
learns a probabilistic forward model. The average suc-
cess rate as a function of required data is visualized in
Figure 7. A run was considered successful, when the
double pendulum performed the swing-up and balanced
in the inverted position. The success rate is given as a
percentage and averaged over 10 independent experi-
ments of the algorithms. In each experiment, the model
was initialized with a different random rollout. The
shaded red graph represents PILCO’s learning speed
and reaches a success rate of 95% after about 50s of
robot interactions. The performance of the model-
based IL algorithm with the KL divergence is visualized
as the green graph and reaches a similar success rate
after about 33 s only. This performance boost can be
explained by the fact that the RL method with the
hand-crafted cost function initially needs to explore
good trajectories that lead to the desired configuration.
Our IL algorithm instead exploits information about
the desired trajectories through the expert’s trajectory
distribution that pushes the exploration towards states
of these expert trajectories. The presence of demonstra-
tions that guide the learning process can be considered
a kind of natural reward shaping (Ng, Harada, &
Russell, 1999) that speeds up learning.

For evaluating the robustness of our IL controller,
we compared our approach with another model-based

q1

q2

(x1, y1)

(x2, y2)

Figure 5. Parametrization of the double pendulum and a
sequence of configurations during the upswing task.
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Figure 6. The task space positions ½x1,y1,x2,y2% of the double pendulum. The blue shaded graph shows the expert trajectory
distribution p(texp) and the red graph shows the predicted robot trajectory distribution p(tp). In both cases, the twice the standard
deviations are shown.
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Figure 7. Average success rate for solving the double pendulum swing-up task as a function of required data the robot effectively
used for learning: (a) comparison with RL; (b) comparison with IL with DMPs. The green error bars in (a) and (b) show the
performance of the model-based IL approach described in Section 4. The shaded red graph in (a) shows the success rate of an RL
controller with the hand-crafted cost function from Equation (28). The shaded blue graph in (b) shows the DMP-based IL controller
from Equation (29). All learned models were initialized with a random rollout. Therefore, they start at 2.5 s.
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IL method. In particular, we used a learned inverse
model combined with a PD controller, such that our
policy was given by

p(q, _q, t)= finv(qt, _qt, q
exp
t + 1, _qexpt + 1, €q

exp
t+ 1)

+Kp(q
exp
t & qt)+Kd( _q

exp
t & _qt),

ð29Þ

where we used DMPs for representing the expert move-
ment (Schaal et al., 2003, 2005). The inverse model was
learned incrementally with GPs similar to our forward
model as described in Section 3.2. As inputs of the GP
model we used the current joint position and velocity
½qt, _qt% and the desired joint position, velocity and accel-
eration of the next state ½qexpt+ 1, _qexpt + 1, €q

exp
t + 1%, which were

given by the DMP. The outputs of the model were
feedforward torques, which are the left-hand side in
Equation (29). We combined this feedforward part with
a feedback controller where we selected Kp = 0:5I and
Kd = 0:25I as suited. The success rate of this method is
visualized as the blue shaded graph in Figure 7. In each
run for estimating the success rate, the start position of
both approaches was sampled from the same probabil-
ity distribution p(x0) to test the robustness of the con-
trollers. It can be seen that the DMP-based method
was able to solve the task and reached an average suc-
cess rate of about 80%. This method learned initially
faster than our IL approach since the PD controller
pushed the robot into the direction of the expert
demonstrations. However, the DMP-based approach
did not reach a high success rate, due to the variations
in the initial position. Our IL method with the KL
divergence shows a higher robustness and solved the
task with an average success rate of about 95%.

These overall results show that the KL divergence is
an appropriate measure for matching trajectory distri-
butions in the context of IL, which leads to a fast learn-
ing of robust policies.

5.1.2. Addressing the correspondence problem. Our
approach is more robust to the correspondence prob-
lem than other IL methods (e.g. behavioral cloning)
because it learns robot-specific controllers. This prop-
erty gives us the ability to learn controllers for cases
where the robot and the teacher do not possess the
same properties (i.e. changing the weight at the robot’s
end effector). For example, in our experiments with the
double pendulum, we applied our IL method to the
double-pendulum swing-up task, where the mass values
of the second link were different during demonstrations
and the robot’s execution. The expert trajectories were
created with a mass of 0:5kg of the second link. We
tested our IL approach in cases where the robot’s sec-
ond link masses ranged between 0:15kg and 1kg. In
such a case, classical behavioral cloning would fail
because the recorded state–actions pairs do not resem-
ble the robot behavior with the changed attributes. Our

IL approach, however, could still learn a controller as
we search for a controller that takes the different attri-
butes during learning into account. Our approach suc-
cessfully performed the task in the range between
0:15kg and 0:57kg for the second link. Learning did
not succeed for mass values above 0:57kg, due to the
torque limits. Thus, our approach is not robust to all
kinds of correspondence problems, particularly if the
required control commands for imitating the teacher
exceed the torque limits of the robot. In this case, we
cannot imitate the teacher. However, we may some-
times still find good solutions.

5.2. Kinesthetic teaching with a BioRob

In this section, we evaluate the performance of our IL
approach on a real robot. We used the biomechanically
inspired compliant BioRob" (Lens, Kunz, Stryk,
Trommer, & Karguth, 2010) to learn a fast ball-hitting
movement that we demonstrated via kinesthetic teach-
ing. We describe first the robot hardware and the
experimental setup, and afterward we provide details of
model and controller learning.

5.2.1. Hardware description. The BioRob" (see
Figure 1) is a compliant, lightweight robotic arm, capa-
ble of achieving high accelerations. Its design tries to
place the servo motors close to the torso, minimizing
the inertia of the links and enable the end-effector to
move with high velocities. Experimental results have
shown Cartesian velocities of the end-effector of up to
6:88 m/s (Lens, 2012). The BioRob X4 is equipped with
an end-effector module that increases the total number
of degrees of freedom to five. The torque is transferred
from the motor to the joints via a system of pulleys,
drive cables, and springs, which, in the biologically
inspired context, represent tendons and their elasticity.
In terms of safety, decoupling the joint and motor iner-
tia protects the items in the robot’s workspace and the
motor gearboxes in the event of collisions. While the
BioRob’s design has advantages over traditional
approaches, it has the disadvantage that controlling
such a compliant system is a highly challenging task.

Classical control approaches that consider only the
rigid-body dynamics of the system are unrealistic for
controlling the robot as they omit the cable-driven
properties, such as the elasticity of the tendons, the
cable slacking effects, stiction, and the energy stored in
the cable springs. Linear control approaches suffer even
more form the actuator dynamics. As a result, both for-
ward and inverse rigid-body dynamics models are not
sufficiently accurate for classical control, and the robot
fails to follow desired trajectories not even approxi-
mately. Moreover, if the control torques are not suffi-
ciently smooth, oscillations close to the eigen-frequency
occur. During the oscillations, the motors hold the
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same position, while the joints, due to the kinematic
decoupling from the motors, oscillate. These oscilla-
tions differ from the classical under-damped control
systems, and, thus, damping them is a non-trivial task.

5.2.2. Task setup. We attached a table-tennis racket to
the end-effector of the robot and attached a ball to a
string hanging down from the ceiling, see Figure 8. The
shape of the racket alongside with the high velocities
produces a significant amount of drag, which is hard to
model accurately, leading to substantial errors in para-
metric models. Thus, learning a non-parametric GP for-
ward model that extracts useful information from data
and, subsequently, learning control policies for solving
the task, is particularly promising for this compliant
tendon-driven robot.

We controlled three joints of the BioRob" for per-
forming the task. The state x 2 R6 was given by three
joint positions and velocities of the robot; the actions
u 2 R3 were given by the corresponding motor torques.
The applied motor commands to the robot were the
outcome of the policy in Equation (27) without any
feedback component. We provided three demonstra-
tions of the task via kinesthetic teaching, as shown in
Figure 8, to create a distribution over expert trajec-
tories. Therefore, we took the robot by the hand and
recorded the system states. The task was first to move
back and then to perform a fast up movement to hit
the ball, see Figure 8.

5.2.3. Model learning. An important parameter when
learning models is the sampling frequency fs = 1=DT

where DT is the time difference between xt and xt + 1 in
our learned forward model, see Equations (2)–(4). High
frequencies result in increased computational time as

the number of time steps for a given prediction horizon
increases. Moreover, changes in succeeding states can
be too insignificant to learn a robust model because of
a low signal-to-noise ratio: Small changes increase the
risk that important information about the underlying
function is filtered out.

For finding an appropriate sampling frequency fs,
we used k-fold cross-validation with the log-likelihood
of our GP predictions as performance measure. We
divided the recorded data into k = 5 training/test folds
and computed for each fold the predictive log-
likelihood with different fs values. The log-likelihood
for one fold is defined as

log p(yijX, y&i)= & 1
2 log jSij

& D
2 log (2p)& 1

2(yi & mi)
>S&1

i (yi & mi):

ð30Þ

Here, y&i denotes the training set without the test val-
ues yi of the current fold, D is the number of test values
and mi and Si are the predicted mean and variance of
the test inputs xi according to Equations (6)–(7),
respectively. Figure 9 shows the averaged log-likelihood
over different frequencies fs. These results show that a
sampling frequency fs of around 10Hz is most suited
for model learning. Higher fs values reach a lower pre-
dictive log-likelihood, which can be explained either by
the fact that either they fit to the measurement noise
leading to overfitting or the signal-to-noise ratio is very
low.

5.2.4. Controller learning. For learning a BioRob con-
troller we used the RBF network from Equation (27)
with 80 basis functions, resulting in 738 policy para-
meters. According to the cross-validation results from

Figure 8. The upper photo series shows a kinesthetic demonstration by an expert and the lower photos show the learned
movement after the fourth iteration of our approach.
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Section, we selected a sampling frequency of 10Hz as
optimal for our GP forward model. We recorded state–
action pairs to initialize the GP forward model.
Therefore, we executed simple movements with a PD
controller at robot configurations around the start dis-
tribution p(x0) of the task. These data points corre-
sponded to a total experience of 6 s. Our probabilistic
IL approach based on trajectory matching led to rapid
learning. After the second attempt, the robot was
already able to hit the ball and to do a movement simi-
lar to the teacher’s. After the fourth trial, the robot
solved the task and could imitate the demonstrations
reliable (see Figure 10).

The predicted distribution p(tp) over robot trajec-
tories, the expert distribution p(texp) over demonstrated
trajectories, and some executed trajectories after four
learning iterations of our proposed IL approach are
visualized in Figure 10. The figure shows the positions
of the three joints that were used for the task. The tra-
jectory prediction of the GP is shown as green error
bars. The blue shaded graph is the expert trajectory.
Some executed trajectories of the robot where we
applied the learned policy are shown as red dashed
lines. The robot was able to imitate the demonstrations
in a robust manner from different starting positions,
using a total of less than 30 s of data to learn both an
accurate forward model and a robust controller.

5.2.5. Generalization to multiple targets. The policy that
the robot learned in the previous experiments was able

to imitate a single task without any generalization abil-
ities. One of the key challenges in IL is the generaliza-
tion to more complex tasks, where a policy needs to be
adaptable to changes in the environment (e.g., to an
object position).

To generalize the policy to different target positions
we incorporated our IL framework into the multi-target
scenario proposed by Deisenroth and Fox (2011). The
key idea is to directly parametrize the policy p by the
target variables h. The policy p(x, u,h) is trained on a
small set of training targets htrain

i , e.g. the orange balls
in Figure 11(a). In the test phase, the policy generalizes
to test targets htest

i that are previously unseen but
related to the training targets. Note that these test tar-
gets do not have to be inside the convex hull of the
training targets (Deisenroth & Fox, 2011).

We define the multiple target objective function as

Jp
MT (u,h)’

1

M

XM

i= 1

Jp
IL u,htrain

i

! "

=
1

M

XM

i= 1

KL p(texpi )jjp(tpjhtrain
i )

! "
,

ð31Þ

where we sum the objective function Jp
IL from Equation

(1) over M training targets htrain
i . With the objective

function in Equation (31) the policy parameters are
learned jointly for all targets. In the context of our IL
setup, we demonstrated multiple trajectories to estimate
the corresponding expert trajectory distribution p(texpi )
for each training target. Optimizing Equation (31) with
Algorithm 1 allows the robot to learn a single policy,
explicitly parametrized by the target location h.

We evaluated the generalization ability of our
approach by extending the experiments from Section to
variable ball positions in a two-dimensional plane, see
Figure 11(a). A target was represented as a two-
dimensional vector h 2 R2 corresponding to the ball
position in Cartesian coordinates in an arbitrary refer-
ence frame within the hitting plane. As training targets
htrain

j , we defined hitting movements for three different
ball positions (see Figure 11(a)). For each training tar-
get, an expert demonstrated two hitting movements via
kinesthetic teaching. Our goal was to learn a policy that
(a) learns to imitate three distinct expert demonstra-
tions and (b) generalizes from demonstrated behaviors
to targets that were not demonstrated. In particular,
these test targets were to hit balls in a larger region
around the training locations, indicated by the blue
box in Figure 11(a). The controller automatically
learned the implicit similarity of the targets.

As the policy parametrization, we used the RBF net-
work in Equation (27) with 250 Gaussian basis func-
tions, resulting in 2774 policy parameters u. For a
detailed description of this approach, we refer the
reader to Deisenroth and Fox (2011).
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Figure 9. Cross-validation of the frequency value fs in the
BioRob experiment. As a performance measure of the model
we use the predictive log-likelihood. High sampling frequencies
increase the risk of overfitting, i.e. important information about
the underlying function is filtered out since the signal-to-noise
ratio is too small. Small sampling frequencies increase the risk of
underfitting, i.e. important variability of the underlying function
is not captured due to under-sampling. The ideal sampling
frequency of the data is at about 10 Hz.
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Figure 11(b) shows the performance results as heat-
map after 15 iterations of Algorithm 1. The evaluation
measure was the distance between the ball position and
the center of the table-tennis racket. We computed this
error in a regular 735 grid of the blue area in Figure
11(b). The distances in the blue and cyan areas were
sufficient to successfully hit the ball. We conclude that
our approach successfully generalized demonstrations
to new targets.

6 Conclusion

In this paper, we have presented a probabilistic model-
based IL approach that enables robots to acquire new
tricks through teacher demonstrations. The three key

components of our approach are: (1) probabilistic mod-
eling of both the robot’s dynamics and the teacher’s
demonstrations allows us to take uncertainty appropri-
ately into account; (2) mental rehearsal of the current
controller with predictions of distributions over plausi-
ble trajectories guarantees data efficient learning; (3)
searching for robot-specific controllers that match the
robot trajectory with the expert trajectory enables us to
use demonstration methods that do not record the
actions of the teacher. We have shown that matching
trajectory distributions by means of minimizing their
KL divergence is equivalent to a reinforcement learning
problem with an induced time-varying immediate cost
function. We addressed the correspondence problem by
learning robot-specific controllers. We demonstrated
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Figure 10. Results after learning the imitation of a task with the BioRob" from kinesthetic teaching. The figures above show the
distribution p(texp) over expert trajectories (shaded blue area) and the distribution p(tp) over predicted trajectories from the
learned forward model (green error bars). Both are plotted with two times the standard deviation. The red dashed lines show some
executed trajectories of the robot where we applied the learned policy. There start state was sampled from the initial distribution
p(x0).
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that differences in the dynamics between teacher and
robot do not disrupt learning as long as the kinematic
and dynamics restrictions of the robot are not passed.
Our experimental results have shown that our approach
learns faster than a reinforcement learning with hand-
crafted cost functions. In addition, the comparison with
the model-based IL method with DMPs showed that
our approach has a high robustness to changes in the
task setup. Furthermore, we demonstrated the applic-
ability of our approach to real robots, where we used a
compliant robot to imitate demonstrations provided by
kinesthetic teaching in a fast and robust manner. We
also showed that our approach applies to more com-
plex imitation tasks with multiple targets.
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Quiñonero-Candela, J., Girard, A., Larsen, J., & Rasmussen,
C. (2003). Propagation of Uncertainty in Bayesian Kernel
Models–-Application to Multiple-Step Ahead Forecasting.
IEEE International Conference on Acoustics, Speech and
Signal Processing, 2, 701–704.

Rasmussen, C., & Williams, C. (2006). Gaussian processes for
machine learning. MIT Press.

Sakoe, H., & Chiba, S. (1978). Dynamic Programming Algo-
rithm Optimization for Spoken Word Recognition. IEEE
Transactions on Acoustics, Speech and Signal Processing,
26(1), 43–49.

Schaal, S., Ijspeert, A., & Billard, A. (2003). Computational
Approaches to Motor Learning by Imitation. Philosophical
Transactions of the Royal Society of London, 358, 537–547.

Schaal, S., Peters, J., Nakanishi, J., & Ijspeert, A. (2005).
Learning Movement Primitives. Robotics Research,
561–572.

Schneider, J. (1997). Exploiting Model Uncertainty Estimates
for Safe Dynamic Control Learning. In Advances in neural
information processing systems.

Solomon, K. (1959). Information theory and statistics. Wiley,
New York.

Spong, M., Hutchinson, S., & Vidyasagar, M. (2006). Robot
Modeling and Control. Wiley New Jersey.

Sutton, R., & Barto, A. (1998). Reinforcement learning: An
introduction. MIT Press.

Ude, A., Atkeson, C., & Riley, M. (2004). Programming Full-
Body Movements for Humanoid Robots by Observation.
Robotics and Autonomous Systems, 47(2), 93–108.

Wolpert, D., Ghahramani, Z., & Jordan, M. (1995). An Inter-
nal Model for Sensorimotor Integration. Science, 269,
1880–1882.
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