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Abstract— In the present work, we propose an active learning
framework based on optimal query paths to efficiently address
the problem of tactile object shape exploration. Most previous
approaches perform active touch probing at discrete query
points, which leads to inefficient touch-and-retract motions. In
contrast, in this paper we propose to query information efficient
sliding paths instead of only touch locations. This is realized by
three components: A Gaussian process implicit surface model
represents the shape and uncertainty of the object. A compliant
task/force controller framework fuses the information of this
GP model into the parameterization of its tasks, which enables
the robot to slide over the unknown object safely and robustly.
Thirdly, we develop two strategies to solve the proposed active
path querying learning problem. Sliding along those query
paths not only creates more dense data than touch probing, but
additionally greatly reduces the uncertainty of the object. We
demonstrate the effectiveness of our proposed framework both
in simulation and on the PR2 robot platform. Furthermore, it is
shown that our methodology can be extended to other learning
tasks, such as finding a desired surface normal on an unknown
object, e.g. for pushing.

I. INTRODUCTION

The autonomous exploration and manipulation of a priori
unknown objects in uncertain environments is still a major
challenging problem in robotics. Several studies [1], [2] have
shown that humans generate their robustness and dexterity
in manipulating objects mainly through tactile perception.
The information humans can obtain by the sense of touch
is manifold, including the geometric shape of objects, their
texture, compliance, weight etc. Using this information alone
allows humans to recognize and manipulate objects rapid-
and accurately. Therefore, there is high interest to mimic
these behaviors on robots. However, transferring tactile per-
ception to robots is not trivial. First, suitable touch sensors
are necessary. As tactile perception can only provide local
information about properties of the environment, gathering
the sensor stimuli is an active process. This active exploration
through tactile feedback inherently requires contact centered
interaction with the environment. Advanced control frame-
works are required that are able to safely exploit contacts
and focus on this interaction. Finally, learning methodologies
are not only crucial to interpret the data from tactile sensors
(for example to recognize objects), but are also inherently
necessary to actively guide the explorative movements of
the robot, e.g. following an information-gain objective, to
perceive the tactile information at all.

For manipulation tasks such as grasping, especially knowl-
edge about the shape of an object is important. Most previ-
ous research [3], [4], [5], [6] on applying active learning
methodologies to the problem of tactile shape reconstruction
is based on iteratively selecting discrete locations where the
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Fig. 1. PR2 robot explores an unknown object, a salad bowl, by sliding
along paths obtained by our proposed active learning methodology with
the greedy strategy (section VI-A). Right: current Gaussian process implicit
surface estimation and exploration path. Red high variance, blue low.

robot should touch the unknown object in order to improve
an underlying surface model at most uncertain regions.

However, we think that point querying has disadvantages.
Even with active touch point selection, the touch-and-retract
exploration procedure can be inefficient, since the robot has
to move a lot. Instead of moving away from the object after
each touch, maintaining the contact reduces not only the
necessary movements, but also the shape uncertainty more
efficiently based on tangent information. In addition, staying
in contact makes the problem of generating collision free
paths to new touch points less reliant on prior knowledge.1

Therefore, we belief that an efficient tactile exploration
strategy should exploit contacts by sliding over the surface.

To this end, we propose a novel active learning method-
ology that queries informative exploration paths instead of
only discrete points. The unknown object is represented with
a Gaussian process implicit surface model, which enables us
to take the uncertainty of the surface model into account.
Sliding along an unknown surface, however, requires a
suitable control concept, which cannot be treated separately.
Therefore, we consider how the surface representation and
the exploration strategy can be incorporated into the con-
troller such that the exploration is robust and safe.
To summarize, the main contributions are
• A novel active learning formulation that queries com-

plete paths instead of single points while taking a priori
unknown constraints into account.

1Whereas contact with the touch sensor is desired, collisions between the
unknown object and other parts of the robot while probing a new touch
point have to be avoided.



• Two algorithms to solve this active learning problem.
• The application of these methods for tactile object shape

exploration by sliding along the query paths.
• A compliant task/force controller concept that integrates

the surface estimation into its tasks and their parame-
terizations.

• An acquisition function which enables the robot to find
desired surface normals on the unknown object.

After reviewing related work in section II, the background
on Gaussian process implicit surfaces is given in section III.
The sections IV, V, and VI present the main contributions of
our work. First, the active learning with query paths problem
is formulated in section IV. Then we discuss how the surface
model can be incorporated into the proposed control concept,
section V. The actual exploration strategies that solve the
active learning problem are presented in section VI. Finally,
experiments in section VII demonstrate our approach in
simulation and on a real robot, the PR2. Here, we show that
our active learning with query path sliding approach is able
to outperform existing point querying methods.

II. RELATED WORK

The various aspects of tactile perception and exploration
are investigated by different subfields in robotics. So-called
tactile servoing deals with tactile sensing and control of a
robot for sliding movements [7], [8], [9]. However, here the
explorative movements are programmed.

A. Active Tactile Shape Exploration by Point Querying

In the context of active learning, the question of how
a robot can autonomously explore an object is addressed.
The authors of [3], [4], [5], [6] all deal with active tactile
shape exploration by touch probing the unknown object at
discrete locations. Dragiev et al. [3] introduced the idea of
using the variance of the Gaussian process implicit surface
model to guide the robot to locations where the model is
most uncertain. Their goal is to use these shape models
for grasping. To generate the motions they assume that the
robot can sense contact anywhere on its skin and the surface
model is initialized with a random sample from the object.
Additionally, it is proposed how the surface model can be
integrated into joint trajectory optimization. When the robot
senses contact, the execution of the trajectory is stopped,
the surface model is updated, the trajectory is reversed and
process starts again. Björkman et al. [4] initialize the GP
implicit surface model with visual data and the robot then
enhances this model similarly to [3] by grasping the object
at locations where the model has the highest uncertainty.
Instead of implicit surfaces, Yi et al. [5] represent the height
of an object over a rectangular space. This exploration area
must specified by expert knowledge beforehand, which we
belief limits the applicability of this approach in uncertain
environments. They draw the connection between acquisition
functions known from Bayesian active learning and shape
exploration. [6] differs from [5] in that they not only use
Gaussian process regression for modeling the height of the
object, but additionally learn a classifier that distinguishes
object/no object to bias the exploration towards the boundary.

This classifier also requires a heuristic based on the z-
coordinate. A limitation of [6] and [5] is that most objects in
the world cannot be represented sufficiently as height maps.

To summarize, existing approaches to tactile shape explo-
ration are based on point queries, require assumptions which
we would like to avoid and lead to inefficient repeated touch-
and-retract motions. Little effort has been made to incorpo-
rate exploration strategies into closed-loop controllers, which
we consider is crucial for the success of tactile exploration.

B. Active Path Planning in Field Robotics
In field robotics, a robot often has to travel large distances.

Therefore, active learning methodologies in this area address
the problem of information efficient path planning with
minimal length. Hollinger et al. [10] consider information ef-
ficient view planning for underwater inspection. The queried
view points are, however, also discrete in nature and no
observations along the travel paths are considered.

In contrast, Marchant et al. [11] introduced the idea of
continuous informative path planning as an extension to
Bayesian optimization. This work is most related to our
proposed method. They aim at querying paths that maximize
the acquisition function integrated along the path. However,
the key difference to our problem of tactile shape exploration
is that in field robotics no environmental constraints, espe-
cially no unknown ones, are present and therefore the robot
can travel along the optimized paths directly, which is not
possible in our setting.

In summary, path queries in the context of active learning
have rarely been studied. What we propose is, to our knowl-
edge, the first to leverage active learning principles to design
sliding paths for tactile object shape estimation.

III. BACKGROUND ON GAUSSIAN PROCESS IMPLICIT
SURFACE REPRESENTATIONS

The outcome of the exploration process should be a model
that contains information of the object like its shape, surface
normals etc. This representation is also relevant to guide the
exploration itself. Implicit surfaces are a powerful way to
represent arbitrarily shaped surfaces with complex topology.
They also provide geometric information like surface nor-
mals or curvature easily. An implicit surface S ⊂ R3 is
defined as the zero level set of a function F : Ω ⊂ R3 → R

S =
{
x ∈ R3|F (x) = 0

}
. (1)

During the exploration, the robot collects data in form of
a tactile point cloud D = {(xi, ci)}wi=1 with the position
x ∈ R3 where the robot has sensed an object c = 0 or
not c = 1. In contrast to touch sampling approaches, the
data collection takes place with a certain sampling rate over
the whole exploration process, including both on- and off-
surface observations, which provides more dense data than
touch probing. Building an implicit surface from this tactile
point cloud can be seen as a regression problem. Williams
et al. [12] and Dragiev et al. [13] have proposed to use
Gaussian processes (GP) [14] as the regression method for
implicit surfaces. A GP has the advantage that it not only
approximates F , but additionally provides an uncertainty
measure of the model given the data in a probabilistic way,



which makes GPs very suitable for the purpose of this
project. For a given positive definite, two times differentiable
kernel k : Ω × Ω → R, Ω ⊂ R3 and a constant prior mean
m ∈ R, a GP models the probability P (F (x)|D) of the
implicit surface function F conditioned on the tactile data
D as a Gaussian distribution around the mean function

µF (x) = m+ κ(x)Tb (2)

and variance function

VF (x) = k(x,x)− κ(x)TG−1κ(x) (3)

with κ(x) = (k(x,x1), . . . , k(x,xw))
T , G = K + σ2

nIw ∈
Rw×w, K = (k(xi,xj))

w
i,j=1, b = G−1 (Y −m) ∈ Rw,

Y = (c1, . . . , cw)
T . Like [13], we choose m = 1 for

the prior mean to incorporate the prior knowledge that
most of the space is empty. Doing this avoids the need
of artificial off-surface points inside and outside the object
by expert intervention to obtain a reasonable model, which
other authors [4], [10] need to consider or describe to be
problematic [5].

In order to estimate the surface based on the learned GP
model from tactile data, the zero level set of the GP mean
(2) has to be calculated, i.e. S ≈

{
x ∈ R3|µF (x) = 0

}
. To

realize this, we use the marching cube algorithm [15], which
outputs a surface mesh.

Aside from obtaining the surface itself from the GP, with
the derivative of the GP mean function

gF (x)T =
∂

∂x
µF (x) = bT

∂

∂x
κ(x) ∈ R1×3 (4)

the surface normal at location x on the surface

nF (x) = gF (x)/ ‖gF (x)‖2 ∈ R3 (5)

can on the one hand be estimated. On the other hand, outside
the object, i.e. µF (x) > 0, the negative gradient −gF (x)
points towards the unknown object. This interpretation as a
potential field has been introduced in [13] and will be used
in this project for the control concept if the contact has been
lost, see section V. If tactile sensors are used that provide
additional information like normals, those can be integrated
into the GP model as well [13], which would yield better
estimates of the surface normals.

The gradient of the GP variance function

gVF
(x)T =

∂VF
∂x

(x)=
∂k

∂x
(x,x)−2·κ(x)TG−1

∂κ

∂x
(x) (6)

will play a key role for the development of the greedy explo-
ration strategy presented in section VI-A, because it points
in the direction where the current GP surface estimation is
most uncertain locally [3].

Regarding the kernel, we consider the strictly positive
definite so-called inverse-multiquadric kernel

k(x,x′) =
(
‖x− x′‖22 + l2

)− 1
2

(7)

with a length scale parameter l. We observed that this kernel
produces more favorable implicit surfaces and their variance
compared to the often used squared exponential kernel.

Cholesky updates: A standard GP implementation suffers
from the cubic complexity for calculating G−1, which is
unfavorable for the purpose of this project, since the model
has to be recomputed during the exploration in a 5 Hz loop.
However, as the matrix G is a positive definite matrix, we
compute and store the Cholesky decomposition of it. When a
new data point is sampled, updating the Cholesky factor only
requires quadratic complexity. Since then all involved linear
systems are triangular, the complexity of the GP implicit
surface model could significantly be reduced.

IV. ACTIVE LEARNING WITH QUERY PATHS – PROBLEM
FORMULATION

We first describe the motivation for our proposed active
learning framework and then formulate it more generally.

The main goal of tactile exploration as considered in this
work is to reconstruct the shape of an unknown object with a
GP implicit surface model. Therefore, the quantitative objec-
tive is to minimize the error between the reconstructed and
true surface. Since the true surface is usually not available
for an unknown object, this error cannot be used to derive an
exploration strategy directly. Instead, the uncertainty of the
current GP surface model can act as a surrogate measure.
As proposed by Dragiev et al. [3], the surface uncertainty
for a given tactile dataset D can be defined as the integral of
the GP variance over the surface, normalized by its area (to
make it comparable with different objects), which we call
the Uncertainty Measure:

U(D) =

∫
S VF ds∫
S ds

. (8)

The purpose of an active learning methodology is to generate
actions of the robot to interact with the object/environment
such that this uncertainty measure is minimized.

In more general Bayesian active learning, this problem
is formulated in terms of a general so-called acquisition
function a(x) : R3 → R. This acquisition function encodes
regions that are interesting to explore. For example, in so-
called Bayesian optimization, the goal is to minimize an
unknown and expensive to evaluate function by sampling
it at certain locations. Here, the acquisition function tries to
trade-off exploiting the current learned model to minimize
the function and exploring regions where the function has not
been sampled sufficiently to find a better global optimum. For
the objective considered in the present work, namely tactile
shape exploration, the variance of the GP implicit surface
model defines a suitable acquisition function to minimize
the uncertainty measure:

a(x) = VF (x). (9)

In standard Bayesian active learning, one would maximize
the acquisition function and then sample at this location.
Exactly this is performed by [3], [4], [5]. However, as
discussed previously, this point sampling has disadvantages
for robotic applications.

Instead, we aim at maximizing the acquisition function
along a path lying on the unknown object. These consider-
ations lead to our proposed Active Learning with Query



Paths problem formulation:

γ∗ = argmax
γ:[0,1]→R3

∫ 1

0

a(γ(t)) ‖γ̇(t)‖2 dt (10a)

s.t. F (γ(t)) = 0 ∀t∈[0,1] (10b)
γ(0) = x0. (10c)

A similar problem was formulated in [11]. However, they
consider only a 2D problem without constraints and exe-
cute the optimized path completely, neglecting observations
along the path. Especially treating the constraint (10b) is
challenging in our problem setting, since it is unknown a
priori and has to be explored as well. Therefore, solving
this optimization problem (10) is not directly possible. As a
side note, a global optimal path in this formulation would
also have infinite length. To make this problem tractable, we
need

1) A control framework that is able to slide along paths
on the unknown object safely and robustly.

2) Further assumptions on the path to solve the active
learning path querying problem.

3) An algorithmic realization.
This will be discussed in the next two sections.

V. CONTROL CONCEPT

Tactile exploration requires interaction between the robot
and uncertain environments. Whereas point querying can
be performed with simple controllers, sliding over a priori
unknown surfaces along query paths requires more advanced
concepts. Therefore, the controller plays an important role in
this project. We belief that without coupling the controller
and the exploration strategy closely, tactile exploration can-
not work sufficiently.

To provide such a suitable concept, our controller consists
of mainly two parts. First, a task description that is parame-
terized by the GP implicit surface model. Second, a concept
to transform these tasks into motor commands of the robot.

A. Tasks and Parameterization

In general, we describe the desired behavior of a robot
with n joints in terms of task maps φ : D ⊂ Rn → Rd,
y = φ(q), which are differentiable functions from the robot
configuration q to a d-dim. space. Common task spaces
are the position or orientation of the end-effector, but also
tasks like collisions, joint limits etc. are possible. These task
spaces are equipped with desired references yref , ẏref and
their corresponding importance matrices Kp,Kd ∈ Rd×d,
which can be interpreted as stiffness/damping properties in
this task space. With x = φpos(q) we denote the 3D position
task map of the end-effector with reference xref . The relevant
exploration tasks/parameterizations consist of the following
three components, which are visualized in Fig. 2:

1) Maintaining contact: During the exploration, the robot
should maintain the contact between its end-effector and the
unknown object. This is realized by a velocity reference ẏref

nF

in the following 1D task space

ynF
= φnF

(q) = −nF (φpos(q))Tφpos(q) ∈ R, (11)

tangent plane
t1,2(x)

position controlled
subspace

surface normal
estimation
nF (x)

ẏref
nF

velocity reference
towards object
ensures contact

P
n
F (x)d

(x)

x = φpos(q)
position

xref =x+PnF
(x)d(x)

new position
reference

d(x)
exploration
direction

object

Fig. 2. Control concept: The velocity reference ẏref
nF

ensures that the
robot stays in contact by orienting it towards the object based on the normal
vector estimation nF . The desired search direction d is projected onto the
estimated tangent plane, in which position control takes place.

which is the component of the end-effector position in the
direction of the estimated surface normal at x based on
the current GP model. With this velocity reference towards
the object, the controller inherently includes also a recovery
strategy if the contact has been lost unforeseen, since outside
the surface, −nF (x) will point towards the object and hence
the velocity reference in this direction moves the robot to re-
establish the contact with the object again.

2) Position task: The duty of the end-effector position
task x is to actually move the robot over the surface.
However, not arbitrary movements are possible. Instead, the
robot can only change its position locally in the tangent plane
of the object at its current position. To account for this, we
formulate the stiffness/damping matrix of the position task
map as a function of the current position of the robot:

Kp/d(q) = V(q)ΛV(q)T (12)

with the matrix of eigenvectors

V(q) =
(
nF (φpos(q)) t1(φpos(q)) t2(φpos(q))

)
(13)

and their corresponding eigenvalues

Λ = diag
(
0, kp/d, kp/d

)
∈ R3×3. (14)

Here, the eigenvectors t1, t2 are chosen such that they span
the tangent plane, i.e. (t1 ⊥ t2) ⊥ nF , calculated based on
the current surface normal nF , estimated by GP model. This
parameterization, adapting in realtime to the unknown object,
enables position control in the tangent space and does not
interfere (zero eigenvalue in nF direction) with the velocity
reference which maintains the contact with the object.

3) Tangent space projection: The last step is to project
desired movement references onto the tangent plane. Given
an exploration direction d(φpos(q)) ∈ R3 (which could be a
function of the current position), the tangent space projector

PnF
(x) = I3 − nF (x)nF (x)T (15)

projects this search direction onto the tangent plane at x =
φpos(q). Hence, the new position reference is given by

xref = x + PnF
(x)d(x). (16)

If xref is remote, the actual reference is interpolated and
always projected to the tangent plane.



B. Closed-Loop Control Framework
Given M tasks maps φi, their references and parameters,

the sake of the actual feedback control framework is to
transform these into motor commands (torques) u ∈ Rn,
such that the robot accomplish the desired task space behav-
iors. In the following, we describe a compliant task space
controller which can achieve reasonable performance without
the need of a precise dynamics model of the robot. The
controller consists of two nested loops. In the outer, slow
loop with 100 Hz, the necessary joint space references q, q̇
that accomplish the task references are obtained by solving
the inverse kinematics optimization problem

min
q,q̇

M∑
i=1

∥∥φi(q)− yref
i

∥∥2
Ki

p
+
∥∥∥φ̇i(q)− ẏref

i

∥∥∥2
Ki

d

. (17)

Linearizing the first terms at the current joint configuration
q0, i.e. φi(q) ≈ φi(q0) + Jφi(q − q0) with Jacobian Jφi ,
and using ẏi = Jφi

q̇, the solution of (17) can be obtained

q∗ = A−1p

M∑
i=1

JTφi
Ki
p

(
yref
i − φi(q0) + Jφi

q0

)
(18)

q̇∗ = A−1d

M∑
i=1

JTφi
Ki
dẏ

ref
i (19)

with Ap,d =
∑M
i=1 JTφi

Ki
p,dJφi

. By a regularizing posture
task φ(q) = q, yref = q0, ẏref = 0, singularity robustness is
achieved. Since the optimization problem works on the kine-
matics level, the task space stiffnesses/dampings correspond
to the importance of the task. The higher the eigenvalues
of Ki

p, the higher the priority is of achieving the task. In
the context of interaction with the environment, the opposite,
namely compliance in certain directions is often desired (low
eigenvalues). These optimal joint space references (18), (19)
are then translated to motor commands in the inner 1 kHz
loop by a PD joint space control law

u = K̂p (q∗ − q) + K̂d (q̇∗ − q̇) + uf (20)

with joint space stiffness K̂p ∈ Rn×n and damping K̂d ∈
Rn×n matrix. The term uf corresponds to an additional force
controller, which is described in the next paragraph V-C.

Instead of using a joint space stiffness matrix that repre-
sents the task space stiffnesses and accounts for the dynamics
of the robot, we observe that often anisotropic task space
stiffnesses are used to realize compliance in certain task
space directions. This insight allows us to use a hand-tuned
diagonal joint space stiffness matrix Kbase

p and modify it

K̂p = Pγ
p(q)Kbase

p Pγ
p(q) (21)

with the projector

Pγ
p =

(
In − γ · p

(
pTp

)−1
pT
)

(22)

to generate compliance (weighted by γ ∈ [0, 1]) in the range
of p ∈ Rn. We observed with our PR2 robot that this
enables precises position control with compliance in certain
directions. For the purpose of this work, the choice

p(q) = Jφpos(q)TnF (φpos(q)) (23)

generates compliance in the direction of the unknown object,
making the interaction safe and possible. In this way, the
surface estimation directly affects the joint space stiffness
matrix, which connects the closed-loop controller closely
with the GP surface model.

C. Limit Force Controller

When the robot explores the unknown object with the
proposed controller framework from the last paragraph,
contact forces occur. Regulating these forces is important,
first not to damage anything, but also to reduce friction,
which is favorable for the sliding exploration. To realize this,
we use the limit force controller of our previous work [16],
which limits forces to a desired reference without the need
of switching controllers for the free and constrained motion.

VI. EXPLORATION STRATEGIES

In the last section it is discussed how the robot can slide
safely and robustly over the surface of the unknown object.
Now the exploration strategies as the solution of the query
path active learning problem (10) are discussed. In order to
solve (10), we have to impose additional constraints on the
path such that it is finite. Since the true on-surface constraint
(10b) is unknown, we replace it by constraining the path to
lie on the estimated surface based on the current GP model.
This yields the slightly modified learning problem

γ∗ = argmax
γ:[0,1]→R3

∫ 1

0

a(γ(t)) ‖γ̇(t)‖2 dt (24a)

s.t. µF (γ(t)) = 0 ∀t∈[0,1] (24b)
γ(0) = x0 (24c)

+ additional assumptions on the path γ, (24d)

for which in the following two realizations are presented.

A. Greedy Exploration – Local Optimal Paths as Projected
Gradient Methods

The first idea to approach the query path problem (24) is
to consider a local neighborhood only. To this end, assume
that the query path is of the from

γ(t) = x0 + d · t, ‖d‖2 = α (25)

with search direction d ∈ R3 and length α, which typically
should be small. This local path already fulfills (24c). By
using first order Taylor approximations at x0 for both the
acquisition function in the objective (24a) and the GP mean
in the surface constraint (24b), solving (24) for (25) reads as

d∗ = argmax
‖d‖2=α

∫ 1

0

(
a(x0) +∇a(x0)Td · t

)
α dt (26a)

s.t. µF (x0)︸ ︷︷ ︸
0

+gF (x0)Td · t = 0 ∀t∈[0,1]. (26b)

All parts that are independent of d do not alter the solution
of (26). Therefore, it is equivalent to consider the following

d∗ = argmax
‖d‖2=α

∇a(x0)Td s.t. gF (x0)Td = 0. (27)



Solving this finite dimensional problem using Lagrange
multipliers yields the optimal one step path direction

d∗ = α
PnF

(x0)∇a(x0)

‖PnF
(x0)∇a(x0)‖2

(28)

with the same tangent space projector PnF
(15) as for

the controller concept of section V. Not surprisingly, this
means that the optimal local path is the projected gradient
of the acquisition function onto the current tangent plane
estimation with length α. The actual strategy now consists
of repeating those local paths, which perfectly fits to the
exploration controller. Therefore, this strategy, which we call
greedy exploration, can also be interpreted in the notion
of optimization theory: The robot is solving a constrained
optimization problem on the unknown surface by moving
along the projected gradient of the objective function, while
the velocity reference ensures that after each gradient step
the robot fulfills the constraint. For the variance as the
acquisition function, the robot slides in the direction where
the uncertainty of the current surface model is highest locally.

B. Global Exploration – Geodesics in Uncertainty Warped
Space with Receding Horizon Optimal Control

An other idea to address (24) is to add a constraint to the
end of the path. Then the query path consists of a geodesic
on the surface from the actual position x0 to the maximum
of the acquisition function x∗ = argmaxµF (x)=0 a(x). On
the path, the robot should move through regions where the
acquisition function is high. These considerations lead to the
shortest path optimization problem

γ∗ = argmin
γ:[0,1]→R3

∫ 1

0

1

a(γ(t))
‖γ̇(t)‖2 dt (29a)

s.t. µF (γ(t)) = 0 ∀t∈[0,1] (29b)
γ(0) = x0 (29c)
γ(1) = argmax

µF (x)=0

a(x), (29d)

where the distances are warped by the acquisition function,
e.g. the variance on the surface. We call this the global
exploration strategy. Since the on-surface constraint (29b)
is uncertain, the robot cannot travel the complete optimized
path. This is one main difference to the 2D mobile robotics
setting considered in [11], where there are no constraints.
Furthermore, following the whole path would also not
incorporate observations made in between. Therefore, the
optimization problem (29) is solved in a receding horizon
idea similar to model predictive control. With this we mean
the following: First, solving (29) yields a complete path from
the actual position to the one where the acquisition function
is maximized on the surface. Then the robot travels along the
path γ∗(t) to a certain extend t∗ < 1, i.e. t ∈ [0, t∗], only.
Note that the actual path the robot travels until t∗ will differ
from the optimized one, since it is likely that the surface
estimation is corrected by new observations and therefore
the sliding controller framework projects the reference on the
new estimated tangent plane during the slide. The procedure
is repeated by solving (29) again from the current position,
integrating the observations made on the traveled path.

To actually solve this receding horizon optimal path
querying problem, we utilize the Dijkstra algorithm. This
involves as a first step to obtain a surface mesh with
the marching cube algorithm from the GP mean function
µF . This surface mesh can be interpreted as an undirected
weighted graph (V,E,W ) with vertices V and edges E.
The weights W between the vertices are calculated by the
line integral

∫
Eij

a−1 dEij along the edge Eij connecting
two vertices Vi, Vj . Then obtaining the constraint (29d) as
x∗ = argmaxx∈V a(x) reduces to check all vertices. Finally,
the Dijkstra algorithm computes the shortest path from the
vertex, which is closest to the current position x0 of the
robot, towards x∗.

The advantage of this method is that the resulting path
is globally optimal on the discrete mesh. However, it also
has two disadvantages. On the one hand, the discrete nature
of the mesh sometimes leads to zigzag paths. Moreover, the
computational bottleneck of this is to obtain the surface mesh
with the marching cube algorithm, which slows down the
exploration process for dataset sizes larger than 2000.

C. Normal Finding
The articulation of external degrees of freedom often re-

quires pushing against the object at a location with a specific
surface normal vector. Of course, the robot could first explore
the surface sufficiently and then use the model to estimate the
location with the desired normal. However, it is questionable
whether this is effective. Within our methodology, we can
provide a better solution. We propose the normal finding
acquisition function

a(x) =
〈nd,nF (x)〉
‖nd‖2

∈ [−1, 1], (30)

which measures the parallelism between the desired surface
normal nd and the estimated one nF (x) at location x based
on the current GP surface model. It turns out (see section
VII-B.2) that in order to find such a location with a desired
surface normal, no exhaustive shape model needs to be
obtained. The normal finding acquisition function combined
with the greedy exploration strategy only works for convex
objects in general, the global also for non-convex ones. We
considered this strategy explicitly for applications where we
want the robot to articulate links of a priori unknown shapes.

D. Restricting the exploration range
The exploration strategies presented in this work assume

that the robot can move freely and therefore reach every
position in Cartesian space. Usually, this is not the case due
to kinematic limits of the robot. Even with a limit task in
the controller framework, the exploration strategy does not
recognize these limits and still tries to explore the unknown
object from every pose. To circumvent this problem, we
propose to add a potential P : R3 → R, P ∈ C1 to the
acquisition function

ã(x) = a(x) + P(x). (31)

If P(x) < 0 for locations where the robot should not
move, those areas become less interesting for the exploration
strategies. Inside the feasible range, P(x) = 0 should be



ensured. In the notion of optimization theory, restricting
the exploration range refers to inequality constraints and P
can therefore be interpreted as penalty function taking these
inequality constraints into account. For example, if the robot
should not move beyond a certain height zlimit, the potential

P(x) =

{
−c (x3 − zlimit)

2
x3 < zlimit

0 otherwise
(32)

can be used. One might argue that this incorporates some
kind of prior knowledge we would like to avoid. However,
restricting the exploration range refers to prior knowledge on
the robot and not the object itself.

VII. EXPERIMENTS

We show the effectiveness of our proposed approach
both in simulation and on a real robot, the PR2. Refer to
the video attachment to see the procedure in action. We
compare in simulation random and existing active touch
probing strategies [6], [4], [3] with our developed active path
querying methodology. The experiments with the real robot
include the greedy strategy for shape exploration and normal
finding.

The exploration procedure is started as follows. The only
prior knowledge the robot has is that it will find the object
somewhere in one given direction. By a velocity reference
in this direction (together with the limit force controller)
the robot moves towards the object. The exact moment of
contact is unknown a priori. The 5 Hz loop which collects
the tactile data and updates the GP implicit surface model
is run right from the beginning. As soon as there is a first
surface estimate, which happens exactly at that moment when
the robot establishes the contact with the object for first time,
the exploration controller and active learning strategy loops
are started. Then the exploration is performed until the uncer-
tainty measure (8) is below a certain value, which indicates
that the surface is explored sufficiently. The hyperparameters
of the GP implicit surface model were l = 0.2 for the kernel
length scale and σn = 0.3.

A. Simulation

The reason to perform simulated experiments is to focus
on our main contribution, the path querying active learning
methodology. Here, the robot was a cylinder which can trans-
late and rotate arbitrarily in the 6 degrees of freedom in eu-
clidean space. Therefore, the robot can explore the unknown
object from all sides. Nevertheless, the underlying framework
(surface representation, control, exploration strategy) is the
same as for the real world experiments. The object was a box
with 50 cm width/depth and 25 cm height. Fig. 3a shows
the experimental setup in the simulator. The red cylinder
is the robot. Fig. 3a, 3b, 3c visualize the paths and the
learned surfaces at different stages of the greedy exploration
procedure. Fig. 3b additionally shows the surface normal
(red), the variance gradient (black), which is projected on
tangent plane (turquoise) to the green vector defining the
exploration direction. In Fig. 3d, the path and learned surface
with the global strategy is shown. The colors on the surface
in these figures visualize the variance of the surface. Red

(a) Setup in the simulator. Explored
path (greedy) after 8 m travel.

(b) Learned surface, path and cur-
rent exploration direction, 3.2 m.

(c) Greedy, 6.7 m travel length. (d) Global strategy, 7.3 m.
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Fig. 3. Surface exploration in simulation with greedy (a), (b), (c) and
global (d) strategy. The performance between our proposed path querying
active learning approach (greedy, global) and existing active/random point
sampling methods is compared in (e), (f). Our methodology outperforms
point sampling approaches both in uncertainty and surface error reduction.

corresponds to high, blue to low variance. In Fig. 3e the
performance in terms of the uncertainty measure reduction of
the greedy and the global strategy is compared with random
and active point sampling strategies. This comparison with
the point querying methods was made very fair by assuming
that the robot can travel directly from one sampling point
to another, i.e. through the object itself, plus an additional
travel length of 20 cm for each lift-off and touch-down
per sample. In reality, the required travel distance would be
higher. Since in simulation an exact model of the object is
available, Fig. 3f shows the Hausdorff metric, the worst case
error between the GP surface model and the true one. Despite
the biasing in favor for the point sampling methods, our
path querying active learning framework outperforms those
existing methods significantly, both in terms of uncertainty
measure and error reduction. With respect to the uncertainty
reduction, the greedy and global strategy perform equally.
Looking at Fig. 3f, the global strategy is slightly better
than the greedy one in terms of fast surface error reduction.
However, since the global strategy has computational time
issues for large datasets, the greedy strategy is preferred.
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Fig. 4. Greedy surface exploration strategy with PR2 robot from two
experiments. (b) Variance with potential (32), encoded in color, blue low.

B. PR2 Robot

The experiments with a real PR2 robot deal with the
exploration of a salad-bowl (dimensions 30 cm diameter,
9 cm height), as shown in Fig. 1. The end-effector of the
PR2 was equipped with a red ball. Contact is inferred based
on force measurements at the wrist of the PR2 exceeding a
threshold of 1 N. Since the robot has a limited kinematic
range, the exploration is restricted to stay above a certain
height, which is realized by the potential (32) with zlimit =
0.56 and c = 100. Additional tasks to the ones of the
exploration controller (see section V-A) include a joint limit
and an orientation task that ensures that the robot points
downwards. The greedy search direction step size in (28)
was α = 0.04 m.

1) Greedy exploration: The right of Fig. 1 shows the
learned surface model during the exploration with the greedy
strategy after 1.3 m travel length. Fig. 4a visualizes the
evolution of the uncertainty measure (8) for two runs of the
same experiment, which indicates fast uncertainty reduction.
The final learned surface is shown in 4b, after 3 m travel
length and 720 collected data points. The colors encode the
variance of the surface, including the potential (32). The
more blue, the less variance or near the restricted z-height.

2) Normal finding: The goal of this experiment is to find
two normal vectors on the unknown salad bowl without
building a complete surface model first. This was realized
with the normal finding acquisition function (30) described
in section VI-C and the greedy strategy as the underlying
exploration method. The first desired normal was nd1 =
(0,−1, 0.1)

T , whereas the second was in the opposite di-
rection, i.e. nd2 = (0, 1, 0.1)

T . Finding the locations on
the unknown object with those desired normal vectors corre-
sponds to travel to x∗ on the surface with a(x∗) = 1. After
convergence of the acquisition function for the first normal,
the second was chosen. Fig. 5a shows the evolution of this
acquisition function. The required travel length was approx-
imately the shortest path (obtained with a tape measure). As
it can be seen in Fig. 5b, no precise global surface model is
required to solve the normal finding task quickly.

VIII. CONCLUSION

We presented a novel active learning framework based on
path querying to efficiently address the problem of tactile
shape exploration. An essential aspect was to integrate the
surface representation and the controller with the exploration
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acquisition function.
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Fig. 5. Surface normal finding with PR2 and greedy algorithm. The two
desired normals were found efficiently without exhaustive exploration.

strategy into one system. Our methods showed to outperform
previous approaches that are based on point querying.

The experimental setup assumes mainly convex objects.
However, by using additional tactile sensor information such
as contact point estimation, our methodology directly gener-
alizes to non-convex objects as well. The main limitation
of our approach similar to most related work is that the
object has to be static. However, we belief that the methods
presented in this work are indeed useful for dynamic envi-
ronments. We especially proposed the normal finding method
to effectively find locations to push an unknown object.
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