Kinematic Morphing Networks for Manipulation SKkill Transfer

Peter Englert and Marc Toussaint

Abstract— The transfer of a robot skill between different
geometric environments is non-trivial since a wide variety
of environments exists, sensor observations as well as robot
motions are high-dimensional, and the environment might only
be partially observed. We consider the problem of extracting
a low-dimensional description of the manipulated environment
in form of a kinematic model. This allows us to transfer a skill
by defining a policy on a prototype model and morphing the
observed environment to this prototype. A deep neural network
is used to map depth image observations of the environment
to morphing parameter, which include transformations and
configurations of the prototype model. Using the concatenation
property of affine transformations and the ability to convert
point clouds to depth images allows to apply the network in
an iterative manner. The network is trained on data generated
in a simulator and on augmented data that is created with its
own predictions. The algorithm is evaluated on different tasks,
where it is shown that iterative predictions lead to a higher
accuracy than one-step predictions.

I. INTRODUCTION

Modern robots are equipped with sensors (e.g., camera,
laser scanner) that allow them to perceive their environment.
For many policy representations, raw sensor signals are not
directly usable as an input since they are too abstract and
high-dimensional. Therefore, algorithms are necessary to ex-
tract a representation that is a suitable input for such policies.
We propose to use kinematic models of the environment
as such a representation. The main objective of this work
is to extract parameters of such kinematic models from an
observed environment.

In this paper, we consider the scenario where a robot
observes a manipulation environment with a depth sensor.
The observation is taken from a specific viewpoint, which
often results in a measurement that only covers certain parts
of the environment. The goal is to learn a deep neural
network that maps observations to parameters, which are
the input to a manipulation policy. We assume to have the
kinematic model structure of the manipulated environment
and a simulator that can create large amounts of supervised
training data. In the following, we describe the different
components of our approach.

A. Environment Parametrization

We represent the manipulated environment with a kine-
matic model that consists of rigid bodies and joints. Figure]

This work was supported by the DFG project Exploration Challenge
TO 409/9-1.

A python implementation of the proposed algorithm is available at
https://github.com/etpr/kinematic_morphing_network
Peter Englert and Marc Toussaint are with the Machine Learning &

Robotics Lab, University of Stuttgart, Germany.
Email: englertpr@gmail.com

Fig. 1: Kinematic model of a door that we want to extract
from depth images and use to transfer manipulation skills.

shows such a kinematic model for a door environment with
its parametrization (e.g., width, position, handle location). A
key element of our approach is a prototype that serves as a
reference to describe a model. The models are parametrized
by morphing parameters that define the mapping of each
point of a model to a corresponding point on the prototype.
The parameters of this morphing include 3D transformation
parameters as well as configuration parameters of the pro-
totype, such as the height of a door handle. We assume
that if a policy for the prototype model and the morphing
parameters of an observed environment are known, then the
policy can be transferred from the prototype to the observed
environment. Specifically, we will use a trajectory optimiza-
tion method to define costs and constraints depending on the
morphing parameter. These costs and constraints describe
how the robot should interact with the environment (e.g.,
contacts) in order manipulate it into a desired state.

B. Kinematic Morphing Model

The goal of this work is to extract the morphing parameters
from sensor observations. The proposed kinematic morphing
model is defined as a convolutional neural network that maps
depth images to morphing parameters. We propose a data
augmentation method that uses the network predictions to
generate more data. This augmentation is done by applying
the predicted morphing parameters on the input point cloud
and generating a new depth image from it. We use the
same mechanism to make predictions with the network in
an iterative manner. This can be viewed as a controller that
changes the inputs in multiple steps until a steady point is
reached. In our case the steady point is the prototype model
and the goal is to transform all observed models to this
prototype. The advantage is that the model does not have to
predict the morphing parameters in a single step. We show

https://github.com/etpr/kinematic_morphing_network

in our experiments that this results in an increase of the
prediction accuracy.

C. Data Generation in Simulation

Training the parameters of a deep neural network requires
a large amount of data, which is difficult to collect in the real
world since the labels would have to be provided by hand.
In this work, we follow a recent trend to generate synthetic
data with simulators (see Section [[I-B). A kinematic engine
and OpenGL renderer are used to create 3D representations
of environments for a given set of morphing parameters.
This allows to generate a large supervised dataset that
consists of point clouds, depth images, and morphing
parameters. In this paper, we focus on the morphing of the
kinematic models and therefore assume that the background
has already been removed in the data. The kinematic
morphing model is trained on this data and on augmented
data that is created with network predictions.

Combining all these ingredients provides us with a tool
to extract a compact representation from high dimensional
sensor data, which can be used to transfer robot skills
between different environments. We will demonstrate these
transfer abilities in the experimental section, where the
same skill policy is used to manipulate doors of different
shapes and locations. The main contribution of this work is
the kinematic morphing network that is trained iteratively
by augmenting the data with its own predictions.

II. RELATED WORK
A. Extracting 3D Models from Data

Point set registration methods try to find the transformation
between two observations of a model [1], [2]. Iterative
Closest Point (ICP) is a widely used algorithm to align
two point clouds [1]. ICP iterates between the steps: 1)
Matching the points between the two point clouds by finding
the closest pairs; 2) Computing a transformation that min-
imizes the distances between the point pairs; 3) Applying
the transformation on a point cloud and continuing with
step 1. The advantage of these kind of methods is that
they do not require an expensive training procedures like
neural networks. However, they still have open parameters
that influence the performance and the initial estimate of
the transformation is important. The main difference to
our approach is that we can also handle kinematic model
parameters beyond affine transformations. We compare our
approach to ICP in the experiment in Section [V-A]

An alternative strategy is to extract models from motions
of the environment [3], [4]. Martin-Martin et al. [4] do a
feature based approach by tracking the motion of different
feature points and extracting a kinematic model from them.
Sturm et al. [3] follow a probabilistic approach to extract a
kinematic model from pose trajectories of rigid bodies. The
objective of these algorithms is similar to our work. The
main difference to our work is that we do not require object
motions, which is difficult to produce in an automated way
when the environment is initially unknown.

Zhou et al. [5] follow a similar approach to ours and
learn a deep neural network that predicts the configuration
of a kinematic hand model from depth images. The forward
kinematic function is integrated as final layer into the net-
work and outputs the location of each joint. The loss function
is defined on the location of these joints and an additional
loss term ensures that the predicted parameters fulfil physical
constraints. In our approach, we directly compute the error
in the parameter space and also train the network to predict
the model structure (e.g., finger length).

B. Learning in Simulated Environments

Using simulation environments is a way to bypass the
lack of large datasets in robotics. However, bridging the
gap between simulated and real sensor data (e.g., images)
is still an open research question. In [6], a robot grasping
skill is improved by using synthetic data generated with a
simulator. The proposed approach uses domain adaptation
techniques [7], [8] that map synthetic images to realistically
looking images. They use generative adversarial networks [9]
to learn this mapping by using two networks that are trained
adversarial. The generated data is used to train a network that
maps RGB images and actions to grasp success probabilities
[10]. Their results show that the use of simulation data leads
to a consistent improvement of the overall grasp success
rate. Rusu er al. [11] transfer policies from simulated to
real robots by using Progressive Neural Networks [12]. The
first column of the progressive neural network is trained in
simulation. All further layers are trained on the real robot
while the first column is kept fixed. The training is done with
the Asynchronous Advantage Actor-Critic [13] method. The
input to the network is an RGB image and the outputs are a
discrete velocity signal for each joint plus a value function.
Instead of following an end-to-end approach, we propose a
more structured way of transferring skills by extracting a
representation that is suitable as input for standard planning
methods.

Mitash et al. [14] propose an object detection algorithm
based on a physics simulation and a real-world self learning
mechanism. The physics simulator uses CAD models of the
objects to generate realistic scenes. Each scene is rendered
from multiple perspectives and the produced RGB-D images
are used to train a convolutional neural network. The trained
network is used to generate more labeled training data
in a real world environment. Thereby, a robot is used to
arrange the scene and take multiple images from different
perspectives. The detected objects with high confidence are
used to create corresponding labels for all perspectives. Their
results show that the simulation part of the algorithm provide
the policy with a good starting point for the real-world self
learning.

C. Integrating 3D Geometry in Neural Networks

There are different ways of how neural networks can
be used with 3D sensor data and how transformations or
rendering operations can be represented within a network.
A problem that often occurs is that the observations are

taken from a specific viewpoint, which leads to only partial
observations of objects. Eitel et al. [15] do object detection
based on RGB-D data. The model consists of a two-stream
convolutional neural network with an RGB image input and
a depth image input. The output is a probability of how likely
an object is in the image. They compare different ways to
represent depth images and to transfer pre-trained networks
trained on RGB data. Byravan et al. [16] learn rigid body
motions with deep neural networks based on depth data. The
model inputs are a point cloud shaped as an XYZ image
and a force vector. The network combines both inputs in
a late fusion architecture and outputs a transformed point
cloud image. The transformation is done by predicting a
fixed amount of object masks and corresponding rigid body
transformations.

A Spatial Transformer Network (STN) is a network mod-
ule to transform an input feature map to an output feature
map [17]. STN can be used as a layer in a network and are
differentiable. The parameters of the affine transformation
are predicted based on the input feature map. Using STN
leads to invariance regarding translation, scale and rotation.
Rezende et al. [18] use STN to extract 3D structure from
images. A conditional latent variable model with a low
dimensional codec is used to map observed data to an
abstract code that a decoder maps to volume representations.
Similar to our approach, they also use an OpenGL renderer to
convert from a 3D representation to image. In our case, the
low dimensional representation are interpretable kinematic
parameters that can be used for planning methods. Discretiz-
ing the 3D space might be suitable for some tasks like object
detection. However, the achieved accuracy strongly depends
on the resolution of the grid.

III. MODEL & POLICY REPRESENTATION

A. Kinematic Model of the Manipulated Environment

We introduce a parametrized kinematic model of the
environment m(0,~) C R3, which is defined as a set of
points of the manipulated environment (e.g., a door) with
parameters & € R™ and v € R™. A prototype model
m(0y,~,) is defined as a reference for other models, where
Yo and Oy are usually set to 0. In this paper, the term
morphing is used to describe a mapping of a model m(6,)
to the prototype m(6g,~y,). The parameters of the kinematic
model are:

1) The transformation parameters 0 of an affine transfor-
mation T'g € Aff(3) that describes the linear mapping
between two models. The parameters 6 are specific
rotation, translation, and scale parameters around or
along a certain axis.

2) The configuration parameters ~ describe the nonlinear
mapping between two models that cannot be repre-
sented with an affine transformation of the complete
model. An example is the relative position between
two bodies of the environment.

The affine transformation of the morphing operation for a
given configuration =y is

m(0o,7) =Ty 'm(6,7) . (1)

This equation describes how all points of a model paramer-
ized by O transform onto a prototype 8y. The goal of this
paper is to predict model parameters (6,-y) from sensor ob-
servations of the model. These parameters relate the current
observed model to the prototype model, which will be used
to adapt the policy from the prototype to the observed model.

B. Constrained Trajectory Optimization Policies

Our policy representation is a constrained trajectory op-
timization problem consisting of costs and constraints that
describe how the robot should interact with the environment.
We use k-order Markov optimization [19] that finds trajec-
tories Zg.r € R*(T+1) by solving the problem

&5 = argmin w ' ®*(Zg.7, m) (2)
Zo.T
s.t. g(xo.r,m) <0
h(I_B();T, m) =0.

® are cost features (e.g., endeffector position/orientation)
of the trajectory and w are feature weights. Inequality
constraints g and equality constraints h are used to define
further properties (e.g., contacts, collision avoidance) of the
motion. The kinematic model m is an input to the cost
and constraint functions, which generalizes the skill between
different models.

IV. KINEMATIC MORPHING NETWORKS

In this section, we propose an approach to extract mor-
phing parameters from environment observations. The robot
observes an instance of the kinematic model m(6,~) in form
of a depth image D € RW>*# and corresponding point cloud
P c R3>*WH) We define the function

f: RWXH L, gn Rm (3)

that maps depth images D to morphing parameters (6,-)
(see Section . In this paper, f(D;(3) is represented as
a neural network with parameters 3 € RE. In the proposed
approach, data of the form D = {(D, P()) ~(@D)}N
is used to optimize the network parameters 3. In the follow-
ing sections, we describe the network prediction, training,
and architecture.

A. Iterative Network Predictions

We introduce an iterative network prediction mechanism
that applies the network in Equation (3) repeatedly. For
a given input (D, P), the predictions are computed by
iterating:

1) Predicting parameters 6 for D with Equation (3).

2) Applying the transformation T'g to the point cloud P.

3) Rendering a new depth image D from P.

These three steps are repeated until a fixed point is reached.
The resulting point cloud after ¢ iterations is

P, =T, .. T, 'T,'P. 4)

Algorithm 1: Multi-step Network Predictions

Algorithm 2: Data Generation and Network Training

function predict(D, P,0,3,N) :

ford=1:N
(077) = f(DwB)
P=T,'P
D = pointCloudToDepth(P)
06=0 '00

end

return (D, P,0,~)

The idea is that in each step the point cloud is transformed a
bit closer towards the prototype. After convergence, this point
cloud should overlay with the prototype 6. The necessary
steps are summarized in Algorithm [} The inputs are a
depth image D, a point cloud P, a previous transformation
0 (by default 8,), network parameters 3 and number of
predictions NN. In the first step of the loop, the network
predicts transformation parameters for the given depth image.
Afterwards, the corresponding point cloud is transformed
with the predicted transformation, which is then mapped to
a new depth image. Finally, the predicted transformations
are concatenated that we express with the symbol o. This
procedure is repeated IV times. The output are a new depth
image and point cloud with the corresponding morphing
parameter. An alternative to the fixed number of iterations
N would be to repeat the steps until the network predicts
a transformation that is close to the identity transformation,
which indicates convergence. The algorithm requires a con-
verting functionality pointCloudToDepth that renders a depth
image D from the transformed point cloud P. Since the
configuration parameters < cannot be predicted in an iterative
manner, only the last prediction of the network is used.

B. Data Generation and Network Training

Algorithm [2] shows the combined data generation and
network training. Throughout the training, the current state
of the network is used to augment the training data by
using Algorithm [T} The inputs are the parametrized model of
the environment m(8,), the neural network f(D;(3), the
initial dataset size Nga., the augmented dataset size Nyg,
and the limits of the model parameters (L', L'°%). In the
first part of the algorithm, a dataset is generated with an
OpenGL renderer that creates for a given model m(6,~) a
depth image D and a point cloud P. The parameters are
thereby sampled uniformly in the feasible parameter range
defined by L' and LY. Afterwards, the network is trained
on the generated dataset. In the second part, the trained
model is taken to augment the dataset by applying the model
on a subset N, of the initial data. Thereby, the iterative
network predictions with Npeq predictions from Algorithm
is used to generate a new datapoint. The augmented data is
appended to D and the network is retrained. This second part
can be seen as a fine-tuning of the network parameters for
data points that are close the prototype. The data generation
and retraining procedure is repeated until there is no further
change in network parameters (3.

Input
Kinematic model m(0,~)
Neural network f(D, 3)
Initial dataset size Nga
Augmented dataset size Nyyg
Upper and lower parameter limits (L', L!°%)

Initialize dataset D = ()
// Generate an initial dataset
for d = 1: Nyaa
(8,7) ~ U(L™, L)
(D, P) = render(m(0,~))
D=DU{(D.P,0.)}
end

// Train network

D] _ , ,
B=argmin 3 ||(6,) — f(DD;g)|[*
B =1
/I Generate data with model predictions
Npred =1
repeat
for d =1: Ny,
(D, P,6,~) = predict(D, PV, 6'9, 8, Nyrea)
D=DU{(D,P,6,~v%)}
end

// Retrain net‘vg(l)rk

B = arg;mn) (8, ~®) — f(DY); B)]|

Npred = Npred +1
until no change in 3

2

Output:
Optimal network weights 3*

C. Network Architecture

The function f is parametrized as a multi-layer convo-
Iutional neural network. The data consists of depth images
with width W = 640 and height H = 480 as well as
corresponding point clouds with W - H points. The depth
images are downsampled to a resolution of 128 x 96 before
using them as an input to the network while the point
cloud dimensionality is kept the same. This downsampling
has two benefits: 1) A reduction of the amount of network
parameters 3; 2) The conversion from point clouds to depth
images is better since there are fewer holes that might occur
through scaling or rotation operations. The depth values are
normalized between a value of 0 and 1, where a depth value
of 0 belongs to the background and all other values to the
environment. The basic structure of the network consists
of 5 convolution layers where each layer is followed by a
max-pooling layer. We use a rectified linear unit activation
function in the convolutional layers and a kernel size of 3x 3.
The number of channels of the convolutional layers is chosen
dependent on the model complexity. The last layer of the
network is a linear layer that outputs the parameters (0, -).

Scenario + Lo | pu N Network Baseline Baseline KMN KMN ICP ICP
Parameter data architecture (Train) (Test) (Train) (Test) (Train) (Test)
box A 40000 [246810] | 4.521e-03 | 4.512e-03 | 1.429¢-03 | 1.417e-03 | 1.668e-02 | 1.681e-02
0:

X translation -0.40 | 0.40 2.124e-03 | 2.075e-03 | 6.870e-04 | 7.007e-04 | 7.419¢e-03 | 7.183e-03
y translation -0.40 | 0.40 2.397e-03 | 2.437e-03 | 7.417e-04 | 7.165e-04 | 9.258e-03 | 9.623e-03
box B 60000 [24 68 10] 7.125e-02 | 6.968e-02 | 7.335e-03 | 7.345e-03 | 6.370e-01 | 6.281e-01
0:

X translation -0.40 | 0.40 9.530e-03 | 9.559¢-03 | 1.590e-03 | 1.629¢-03 | 1.023e-02 | 1.057e-02
y translation -0.40 | 0.40 1.161e-02 | 1.129e-02 | 1.790e-03 | 1.763e-03 | 1.281e-02 | 1.332e-02
z axis rotation | -1.05 | 1.05 5.010e-02 | 4.883e-02 | 3.955e-03 | 3.953e-03 | 6.140e-01 | 6.042¢-01
box C 100000 | [4 8 10 12 14] | 1.886e-01 | 1.911e-01 | 4.242e-02 | 4.295e-02 - -

0:

X translation -0.40 | 0.40 1.348e-02 | 1.345e-02 | 2.904e-03 | 2.807¢-03 - -

y translation -0.40 | 0.40 1.307e-02 | 1.345e-02 | 2.835e-03 | 2.727e-03 - -

z axis rotation | -1.05 | 1.05 8.080e-02 | 8.430e-02 | 9.675e-03 | 1.094e-02 - -
length scaling | -0.40 | 0.40 4.213e-02 | 3.956e-02 | 1.383e-02 | 1.298e-02 - -
height scaling | -0.50 | 1.50 3.913e-02 | 4.029¢-02 | 1.318e-02 | 1.350e-02 - -
door 100000 | [2 4 8 16 32] | 1.385e-01 | 1.394e-01 | 5.253e-02 | 5.307e-02 - -

0:

X translation -0.80 | 0.80 1.217e-02 | 1.238e-02 | 2.954e-03 | 2.940e-03 - -

y translation -0.80 | 0.80 8.174e-03 | 8.471e-03 | 3.236e-03 | 3.192e-03 - -

z axis rotation | -1.05 | 1.05 1.976e-02 | 1.948e-02 | 5.275e-03 | 5.512e-03 - -

~:

door height -0.40 | 0.20 1.504e-02 | 1.473e-02 | 1.199e-02 | 1.177e-02 - -
door width -0.20 | 0.20 1.662e-02 | 1.686e-02 | 4.539e-03 | 4.474e-03 - -
handle y -0.04 | 0.04 1.858e-02 | 1.903e-02 | 1.058e-02 | 1.068e-02 - -
handle z -0.10 | 0.10 4.818e-02 | 4.849¢-02 | 1.395e-02 | 1.449e-02 - -

Fig. 2: Results of experiment

The loss function is the mean squared error that is minimized
with the Adam optimizer [20]. A python implementation of
the proposed algorithm can be found in the supplementary
material.

V. EXPERIMENTS

The proposed approach is evaluated based on three ex-
periments. In the first experiment, the performance is com-
pared to alternative strategies on different tasks with varying
complexity. The second experiment shows the adaption to
real world sensor data and the third experiment demonstrates
the transfer of a policy between different simulated door
environments.

A. Evaluation of Kinematic Morphing Networks

The prediction accuracy is evaluated on two tasks:

1) box: Three different box parametrizations are defined
with varying complexity: A) n = 2: the box is only
translated along the horizontal x and y direction; B)
n = 3: the box is additionally rotated around the z axis;
C) n = 5: the box is additionally scaled in its width
and height.

2) door: This environment has n = 3 transformation pa-
rameters and m =4 configuration parameters. The
transformation parameters @ are, similar to the box,
the translation along = and y and the rotation around
the z axis. The configuration parameters -y are the size
of the door and the location of the door handle. The
parametrization is sketched in Figure

Figure [5] shows several depth images of both tasks. The
prototype is, in both tasks, defined at 8y = 0 and v, = 0,
which corresponds to the configuration where the object
is directly in front of the robot. We compare different

algorithms on both environments that predict the morphing
parameters (0,~) from depth images and point clouds. The
algorithms are:

o Kinematic Morphing Network (KMN): This is the
method proposed in this paper (see Section with
Nprea = 5 number of predictions.

o Baseline: Uses the same neural network as KMN.
However, the network is only trained on the initially
generated data without retraining and applied with a
single prediction step (Npred = 1).

o Iterative Closest Point (ICP): The iterative closest
point algorithm [1] with 100 iterations.

The results of this experiment are shown in the table in
Figure 2| The table lists the environment parameters, model
architectures, and prediction error for all tasks and algo-
rithms. The network architecture describes the number of
channels in the 5 convolutional layers. The dataset is split
into 80% train and 20% test data. The initially generated
amount of data Ny, and the network architecture is chosen
heuristically according to the complexity of the task. The
number of augmented data points Ny is set to 20% of Nyaa.
The reported error metric is the mean absolute error over
1000 data points and reported on the train and test set for
each algorithm.

The results indicate that the proposed approach KMN
achieves the lowest prediction errors on all tasks. The
difference between KMN and Baseline comes through the
iterative prediction and retraining mechanisms, since both
variants use the same network architecture. Figure [3a] shows
the training error of the Baseline and KMN variants on
the box environment C. A different color denotes a new
iteration of the KMN retraining loop in Algorithm [2| The

N Baseline KMN

107!

MAE (train)

. vt i i
it PN e e T PR FOSP A R T
Mmm

0 500 1000 1500 2000
Training epochs

(a)

) —}— Baseline
2.0 KMN

0.0 I Ui f i

0 1 2 3 4 5
Number of network predictions

(b)
Fig. 3: The graphs in show the training error of the
Baseline and KMN variant. The alternating colors denote a
new retraining iteration of Algorithm 2} The plot in[(b)]shows
the prediction error with standard deviation over multiple
predictions with each network.

data augmentation of KMN leads to a faster decrease of
the training error. Figure [3b] shows the prediction error with
standard deviation of Baseline and KMN over number of
predictions on the test set. The first prediction of both net-
works achieves a similar error. However, the KMN method
improves the prediction by applying the network multiple
times. After 3 iterations there is no significant change in
the accuracy anymore. The prediction error of the baseline
increases since it only was trained on the initial dataset. This
shows that the retraining mechanism is necessary in order to
apply the network iteratively. The ICP algorithm was applied
on box A and box B since they do not have any configuration
parameter. ICP achieves a reasonable performance on the
translation parameters of both environments. However, ICP
had difficulties on the rotation parameter since it sometimes
could not detect the correct rotation direction or led to
rotations that flipped the box.

Figure [5] shows different samples of the dataset (top row)
with the corresponding network prediction (bottom row)
separated in best and worst predictions. The worst predictions
occurred when the box or door were only partially observed.
This makes sense since it is difficult to estimate the height
of a door when it is not fully visible. The samples also show
that the transformation of point clouds and the subsequent
rendering can lead to holes in the depth image. However,
since the KMN network also has such data points in the
training phase, it could handle them better than the Baseline.
The morphing transformations of the door and box task are
shown in the appended video.

B. Evaluation on Real Sensor Data

In this experiment, we evaluate how the KMN model
performs on real sensor data. The trained model of the box C

Fig. 4: Sequence of a door opening motion.

task is applied on data recorded with a Kinect vl camera. The
point clouds are recorded with the IR depth-finding camera of
the Kinect. We tried to reproduce the simulated environment
in the real world (e.g., same camera pose). The point clouds
are preprocessed by transforming the points from camera into
world frame and removing the points that do not belong to
the object. We put the box at 15 different locations inside the
field of view of the camera. The network was able to predict
morphing parameters for all 15 samples that transform the
observed box close to the prototype. The achieved accuracy
was lower and the number of network predictions Npreq until
convergence was slightly higher in comparison to simulation
data. Figure[f]shows different point clouds overlaid with their
predicted box location (green box).

C. Skill Transfer on the Door Task

We use the trained KMN model to transfer a skill policy
between different doors. The policy is defined on the kine-
matic model m (0,) as a constrained optimization problem
[21]. The robot is a PR2 and the trajectory xo.r consists of
T = 200 configurations of the robot base (3 dof), left arm (7
dof), gripper (1 dof), and door (2 dof). The features ® of the
cost function are defined as the base pose in front of the door,
the pre-grasp pose of the gripper in front of the handle as well
as the target states of the handle and door joint. The equality
constraint h consists of a feature that describes the contact
between door handle and gripper. Specifically, two points
are defined on the door handle and on the robot gripper. The
constraint measures the difference between a point pair that
should be zero during the manipulation. Further constraints
are defined to avoid collisions and to fix joints when they
are not being manipulated. Figure 4] shows a sequence of the
skill on an instance of the door environment.

VI. CONCLUSION

We introduced kinematic morphing networks to transfer
manipulation skills between different environments. Kine-
matic morphing networks extract parameters from depth
images and are trained on data generated with a simulator.
The conversion between point clouds and depth images
allows to apply the network in an iterative manner, which
increases the overall accuracy. We demonstrated the network
performance on real sensor data and the transfer of a skill
with a motion planning method.

Best predictions

Worst predictions

5 »
> -
1 ® n
] i
< . I >
5
m c
S)
2
5]
<
o
-
3 |
2 |
<
| L
o
5
o)
o ¢
9o
2
5
2 .
Qo
o

Fig. 5: In the top row are the depth image inputs and in the bottom row are the corresponding transformed depth images
from the network predictions.

[11

[2]

[3]

[4]

[5

[ty

[6

—_

[7

—

[8]

[9

—

[10]

Fig. 6: Kinematic morphing network predictions (green box) overlaid with point clouds from a Kinect camera.

REFERENCES

Y. Chen and G. Medioni, “Object modelling by registration of multiple
range images,” Image and vision computing, vol. 10, no. 3, pp. 145—
155, 1992.

S. Gold, A. Rangarajan, C.-P. Lu, S. Pappu, and E. Mjolsness,
“New algorithms for 2d and 3d point matching: pose estimation and
correspondence,” Pattern Recognition, vol. 31, no. 8, pp. 1019 — 1031,
1998.

J. Sturm, C. Stachniss, and W. Burgard, “A Probabilistic Framework
for Learning Kinematic Models of Articulated Objects,” Journal of
Artificial Intelligence Research, vol. 41, pp. 477-526, 2011.

R. Martin-Martin and O. Brock, “Online interactive perception of
articulated objects with multi-level recursive estimation based on task-
specific priors,” in Proceedings of the International Conference on
Intelligent Robots and Systems, 2014.

X. Zhou, Q. Wan, W. Zhang, X. Xue, and Y. Wei, “Model-based
deep hand pose estimation,” in Proceedings of the International Joint
Conference on Artificial Intelligence, 2016.

K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakr-
ishnan, L. Downs, J. Ibarz, P. Pastor, K. Konolige, S. Levine, and
V. Vanhoucke, “Using simulation and domain adaptation to improve
efficiency of deep robotic grasping,” arXiv:1709.07857, 2017.

K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Krishnan,
“Unsupervised pixel-level domain adaptation with generative adversar-
ial networks,” in Proceedings of the Conference on Computer Vision
and Pattern Recognition, 2017.

Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Lavio-
lette, M. Marchand, and V. Lempitsky, “Domain-adversarial training of
neural networks,” The Journal of Machine Learning Research, vol. 17,
no. 1, pp. 2096-2030, 2016.

1. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
in Advances in Neural Information Processing Systems, 2014.

S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen, “Learning
Hand-Eye Coordination for Robotic Grasping with Deep Learning
and Large-Scale Data Collection,” in International Symposium on
Experimental Robotics, 2016.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

A. A. Rusu, M. Vecerik, T. Rothorl, N. Heess, R. Pascanu, and
R. Hadsell, “Sim-to-real robot learning from pixels with progressive
nets,” in Proceedings of the Conference on Robot Learning, 2017.
A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,
K. Kavukcuoglu, R. Pascanu, and R. Hadsell, “Progressive neural
networks,” arXiv:1606.04671, 2016.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep re-
inforcement learning,” in Proceedings of the International Conference
on Machine Learning, 2016.

C. Mitash, K. Bekris, and A. Boularias, “A self-supervised learning
system for object detection using physics simulation and multi-view
pose estimation,” in Proceedings of the International Conference on
Intelligent Robots and Systems, 2017.

A. Eitel, J. T. Springenberg, L. Spinello, M. Riedmiller, and W. Bur-
gard, “Multimodal deep learning for robust rgb-d object recognition,”
in International Conference on Intelligent Robots and Systems, 2015.
A. Byravan and D. Fox, “Se3-nets: Learning rigid body motion using
deep neural networks,” in Proceedings of the International Conference
on Robotics and Automation, 2017.

M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu,
“Spatial transformer networks,” in Advances in Neural Information
Processing Systems, 2015.

D. J. Rezende, S. A. Eslami, S. Mohamed, P. Battaglia, M. Jaderberg,
and N. Heess, “Unsupervised learning of 3d structure from images,”
in Advances in Neural Information Processing Systems, 2016.

M. Toussaint, “A tutorial on Newton methods for constrained trajectory
optimization and relations to SLAM, Gaussian Process smoothing,
optimal control, and probabilistic inference,” in Geometric and Nu-
merical Foundations of Movements. Springer, 2017.

D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proceedings of the International Conference on Learning Repre-
sentations, 2014.

P. Englert and M. Toussaint, “Learning manipulation skills from a
single demonstration,” International Journal of Robotics Research,
vol. 37, no. 1, pp. 137-154, 2018.

	Introduction
	Environment Parametrization
	Kinematic Morphing Model
	Data Generation in Simulation

	Related Work
	Extracting 3D Models from Data
	Learning in Simulated Environments
	Integrating 3D Geometry in Neural Networks

	Model & Policy Representation
	Kinematic Model of the Manipulated Environment
	Constrained Trajectory Optimization Policies

	Kinematic Morphing Networks
	Iterative Network Predictions
	Data Generation and Network Training
	Network Architecture

	Experiments
	Evaluation of Kinematic Morphing Networks
	Evaluation on Real Sensor Data
	Skill Transfer on the Door Task

	Conclusion
	References

